Skip to main content

Advertisement

Log in

Aerodynamic Multi-Parameter Optimization of NACA0012 Airfoil Using Suction/Blowing Jet Technique

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this research, three-parameter numerical optimization of aerodynamic characteristics of an airfoil at high angle of attack is carried out. The separation region is reduced with two types of suction/blowing usage: single blowing function jet and combined suction and blowing jets. Genetic algorithm is used to optimize the three parameters of the suction/blowing jet strength, jet angle and jet location. The objective of this investigation was to reduce the high separation region over the NACA0012 airfoil to enhance its aerodynamic characteristics. The time-averaged compressible Navier–Stokes equations with Spalart–Allmaras turbulence model are solved along with optimization algorithm. The lift-to-drag ratio is increased up to 80 % with respect to the uncontrolled flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\rho \) :

Mass density

uv :

Mean velocity components

\(q_{x},q_{y}\) :

Heat flux components

\(\tau _{ij}\) :

Viscous stress

\(\tau _{{\mathrm{t}_{ij}}}\) :

Turbulence viscous stress

E :

Total energy per unit volume

p :

Pressure

k :

Thermal conductivity

\(\mu \) :

Viscosity

\(\mu _\mathrm{t}\) :

Turbulent viscosity

T :

Temperature

e :

Specific internal energy

\(\gamma \) :

Rate of the specific heat

\(c_\mathrm{v}\) :

Specific heat at constant volumes

\(c_\mathrm{p}\) :

Specific heat at constant pressure

\(\alpha \) :

Angle of attack

V :

Jet velocity

\(\theta \) :

Jet angle with respect to the horizon

\(L_{\mathrm{j}}\) :

Jet location

\(C_{{\mathrm{d}_\mathrm{B}}}\) :

Drag coefficient of the base airfoil

\(C_{{\mathrm{l}_\mathrm{B}}}\) :

Lift coefficient of the base airfoil

M :

Mach number

References

  1. DeMauro, E.P.; Haley, D.; Sarah, Z.; Chia Min L.; Michael A.: Control of laminar separation bubble on NACA 0009 airfoil using electroactive polymers. AIAA J. 53(8), 2270–2279 (2015)

  2. Kato, K.; Breitsamter, C.: Flow control on Gö 387 airfoil by using nanosecond pulse plasma actuator. In: Theofilis, V., Soria, J. (eds.) Instability and Control of Massively Separated Flows, pp. 65–70. Springer, Berlin (2015)

  3. Wild, J.: Mach-, Reynolds-and Sweep effects on active flow separation control effectivity on a 2-element airfoil wing. In: King, R. (ed.) Active Flow and Combustion Control 2014, pp. 87–100. Springer, Berlin (2015)

  4. Seifert, A.; Pack, L.G.: Separation Control at Flight Reynolds Numbers: Lessons Learned and Future Directions. AIAA paper 2000–2542 (2000)

  5. Seifert, A.; Pack, L.G.: Active flow separation control on wall-mounted hump at high Reynolds numbers. AIAA J. 40(7), 1363–1372 (2002)

    Article  Google Scholar 

  6. Pack, L.G.; Seifert, A.: Periodic excitation for jet vectoring and enhanced spreading. J. Aircr. 38(3), 486–495 (2001)

    Article  Google Scholar 

  7. Frunzulică, F.; Dumitrache, A.; Dumitrescu, H.: Investigations of passive flow control devices for vertical axis wind turbines. PAMM 14(1), 723–724 (2014)

    Article  Google Scholar 

  8. Lovig, E.N.; Downs, R.S.; White, E.B.: Passive laminar flow control at low turbulence levels. AIAA J. 52(5), 1072–1075 (2014)

    Article  Google Scholar 

  9. Wang, J.; Bartow,W.; Moreyra, A.; Woyczynski, G.; Lefebvre, A.; Carrington, E.; Zha, G.: Low drag automotive mirrors using passive jet flow control. SAE Int. J. Passenger Cars Mech. Syst. 7, 538–549 (2014).

  10. Gul, M.; Uzol, O.; Akmandor, I.: An experimental study on active flow control using synthetic jet actuators over S809 airfoil. J. Phys. Conf. Ser. 524(1), 012101 (2014)

  11. Asada, K.; et al.: LES on turbulent separated flow around NACA0015 at Reynolds number 1,600,000 toward active flow Control. In: AIAA conference AVIATION (2014)

  12. Jones, G.; Santer, M.; Papadakis, G.; Bouremel, Y.; Debiasi, M.; Imperial-NUS Joint PhD Collaboration: Flow control at low Reynolds numbers using periodic airfoil morphing. In: APS Meeting Abstracts. 67th Annual Meeting of the APS Division of Fluid Dynamics, vol. 59, Number 20, San Francisco, California (2014)

  13. Gad-el-Hak, M.; Bushnell, D.M.: Separation control: review. J. Fluids Eng. 113(1), 5–30 (1991)

    Article  Google Scholar 

  14. Stanewsky, E.: Adaptive wing and flow control technology. Prog. Aerosp. Sci. 37(7), 583–667 (2001)

    Article  Google Scholar 

  15. Ashill, P.; Fulker, J.; Hackett, K.: A review of recent developments in flow control. Aeronaut. J. 2005(109), 205–232 (1095)

    Google Scholar 

  16. Huang, L.; et al.: Optimization of blowing and suction control on NACA 0012 airfoil using earned genetic algorithm with diversity control. J. Aircr. 44(4), 1337–1349 (2006)

    Article  Google Scholar 

  17. Favier, J.; Kourta, A.; Leplat, G.: Control of flow separation on a wing profile using PIV measurements and POD analysis. In: Morrison, J.F., Birch, D.M., Lavoie, P. (eds.) IUTAM Symposium on Flow Control and MEMS. Springer, Berlin (2008)

  18. Beliganur, N.K.; Raymond, P.: Application of Evolutionary Algorithms to Flow Control Optimization. Report of University of Kentuchky (2007)

  19. Lee, J.; Jung, K.; Kwon, J.H.: The aerodynamic shape optimization of airfoils using unconstrained trust region methods. Eng. Optim. 41(5), 459–471 (2009)

    Article  MathSciNet  Google Scholar 

  20. Zhang, F.; Chen, S.; Khalid, M.: Optimization of transonic wing with fuselage by real-coded genetic algorithm. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimisation Conference (2004)

  21. Manan, A.; et al.: Optimization of aeroelastic composite structures using evolutionary algorithms. Eng. Optim. 42(2), 171–184 (2010)

    Article  Google Scholar 

  22. Marta, A.C.: Parametric Study of a Genetic Algorithm Using a Aircraft Design Optimization Problem. Report Stanford University, Department of Aeronautics and Astronautics (2008)

  23. Liu, J.-L.: Intelligent genetic algorithm and its application to aerodynamic optimization of airplanes. AIAA J. 43(3), 530–538 (2005)

    Article  Google Scholar 

  24. Shimizu, T.: An extension to Roe’s scheme for gas dynamics: general equations of state and spherical coordinates. RIKEN Rev. pp. 27–28 (1996)

  25. Gregory, N.; O’reilly, C.: Low-Speed aerodynamic characteristics of NACA 0012 aerofoil section,including the effects of upper-surface roughness simulating hoar frost. HM Stationery Office, London (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Farhadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhadi, A., Rad, E.G. & Emdad, H. Aerodynamic Multi-Parameter Optimization of NACA0012 Airfoil Using Suction/Blowing Jet Technique. Arab J Sci Eng 42, 1727–1735 (2017). https://doi.org/10.1007/s13369-016-2259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2259-3

Keywords

Navigation