Skip to main content
Log in

Microwave-Synthesized Barium-Impregnated Siliceous Zeolitic Material Derived from Bagasse Fly Ash for Uptake of Aniline

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Aniline has been present in wastewater discharged from chemical manufacturing industries which has great impact on human health and environment. Bagasse fly ash (BFA) is a sugar industry waste and synthesized into zeolitic materials used for elimination of aniline from aqueous solution. The microwave-assisted technique employed for transformation of BFA into zeolitic material which was EMZBFA-Ba (electrolyte-treated microwave-irradiated zeolite of bagasse fly ash-barium). It was further modified with Si/Al ratio 30 (EMZBFA-30-Ba) to enhance its hydrophobicity for better sorption of aniline. The synthesized zeolites were characterized by X-ray fluorescence analysis, powdered X-ray diffraction, Fourier transformed infrared spectroscopy, Barrett–Joyner–Halenda, Brunauer–Emmett–Teller and scanning electron microscopy. The characterized materials result confirmed the existence of major minerals such as harmotome, analcime and barium chloroaluminosilicate zeolitic materials. Barium was incorporated into zeolite for structure directing and crystallinity improvement which also enhanced sorption of aniline. The efficacy of removal of aniline was tested at optimum sorption conditions which do have average sorption capacity of 39.06, 45.02 and 48.59 mg/g for BFA, EMZBFA-Ba and EMZBFA-30-Ba, respectively. Langmuir and Freundlich model fitted for sorption process, while the kinetic studies showed that pseudo-second-order rate, intraparticle diffusion and surface sorption were suitable for sorption of aniline. From thermodynamic study, the major interactions of sorbate and sorbent were hydrogen bonding, dipole forces and chemical bond because these strong forces of interaction sorbents may not be highly regenerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhanggen H., Bingzheng L., Zhiping L.: Surface-treated activated carbon for removal of aromatic compounds from water. Chem. Eng. Technol. 32, 763–770 (2009)

    Article  Google Scholar 

  2. Babak K., Ahmad J.J., Roshanak R.K., Simin N., Ahmad A., Ali E.: Synthesis and properties of Fe 3 O 4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Iran. J. Environ. Health Sci. Eng. 10, 1–9 (2013)

    Article  Google Scholar 

  3. Jaap, C.S.; Sanjay, P.K.; Sudhir, B.S.; Vishwas, G.P.: Photocatalytic and photochemical degradation of aniline using concentrated solar radiation. Chem. Technol. Bio. Technol. (2003). doi:10.1002/jctb.867

  4. United States Environmental Protection Agency Pollution Prevention and Toxics (7407), EPA 749-F-95- 002a(1994)

  5. Ruihua, H.; Bingchao, Y.; Qian, L.; Yanping, L.: Simultaneous Sorption of Aniline and Cr(VI) Ion by Activated Carbon/Chitosan Composite. J. APPL. POLYM. SCI. (2014). doi:10.1002/APP.39903

  6. Suresh, S.; Srivastava, C.V.; Mishra, M.I.: Adsorptive removal of aniline by granular activated carbon from aqueous solutions with catechol and resorcinol. Environ. Technol. (2012). doi:10.1080/09593330.2011.592228

  7. Bhargavi R., Krishna K., Nallaperumal S.K.: Investigation of aniline sorption onto spherical carbon: optimization using response surface methodology. Int. J. Eng. Res. Appl. 3, 943–952 (2013)

    Google Scholar 

  8. Patricia J.H. et al.: Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci. Pollut. Res. 9, 29–47 (2002)

    Article  Google Scholar 

  9. Zhenyu L., Bingzheng L., Zhiping L., Zhanggen H.: Catalytic dry oxidation of aniline, benzene, and pyridine adsorbed on a CuO doped activated carbon. Korean J. Chem. Eng. 26, 913–918 (2009)

    Article  Google Scholar 

  10. Chunxi, L.; Hong, M.; Biliu, L.; Beibei, G.: The removal of aniline from wastewater by electrodialysis in the presence of hydrochloric acid. Desalin. Water Treat.(2013). doi:10.1080/19443994.2013.768412

  11. Titus, E.; Kalkar, K. A.; Gaikar, V. G.: Sorption of anilines and cresols on NaX and different cation exchanged zeolites (equilibrium, kinetic, and IR investigations). Sep. Sci. Technol. (2002). doi:10.1081/SS-120000324

  12. Bhavna, A. S.; Harendra, D. P.; Ajay, V. S.: Equilibrium and Kinetic Studies of the Sorption of Basic Dye from Aqueous Solutions by Zeolite Synthesized from Bagasse Fly Ash. Environ. Prog. Sustain. Energy (2011). doi:10.1002/ep.10505

  13. Abdul S.M., Rose A.K., Zaemah J., Zainab R.: Using the response surface methodology to optimize the extraction of silica and alumina from Coal fly ash for the synthesis of zeolite Na-A Arab. J. Sci. Eng. 37, 27–40 (2012)

    Google Scholar 

  14. Bhavna, S.; Ritesh, T.; Ajay S.: Zeolitic bagasse fly ash as a low-cost sorbent for the sequestration of p-nitrophenol: equilibrium, kinetics, and column studies. Environ. Sci. Pollut. Res. (2012a). doi:10.1007/s11356-011-0638-6

  15. Guixia Z., Lang J., Yudong H., Jiaxing L., Huanli D., Xiangke W., Wenping H.: Sulfonated graphene for persistent aromatic pollutant management. Adv. Mater. 23, 3959–3963 (2011)

    Article  Google Scholar 

  16. Bhavna, S.; Piyush, J.; Ajay, S.: Sorption of Phosphamidon onto Microwave Synthesized Zeolitic Material. Environ. Prog. Sustain. Energy (2013a). doi:10.1002/ep.11760

  17. Feng-Shou X., Xiangju M.: Chemical reviews: green routes for synthesis of zeolites.pubs.acs.org/CR. Chem. Rev. 114, 1521–1543 (2014)

    Article  Google Scholar 

  18. Raul F.L., Allen B.: The role of barium cations in the synthesis of low-silica LTL zeolites. Microporous and Mesoporous Mater. 33, 97–113 (1999)

    Article  Google Scholar 

  19. Supak, T.; Somlak, I.; Siriporn, J.; Thirasak, R.; Somchai, O.; Daniel, E.R.: Effect of zeolite crystallite size on pt/kl catalysts used for the aromatization of n-octane. Chem. Eng. Comm. (2007). doi:10.1080/00986440701232403

  20. Linda, J.B.; Chun-Yi, S.; Randall, Q.S.: A DFT study of sorption of intermediates in the NOx reduction pathway over BaNaY zeolites. Catal. Today. 136,64–75 (2008)

  21. Bachar K., Joumana T., Maya E., Tayssir H., Patrick M., Guy J.: Elimination of aromatic pollutants present in wastewater by sorption over zeolites. Phys. Procedia. 21, 220–227 (2002)

    Google Scholar 

  22. Abdullah M.M.A., Hussin K., Bnhussain M., Ismail N.K., Ibrahim W.M.W.: Mechanism and Chemical Reaction of Fly Ash Geopolymer Cement-A Review. Int. J. Pure Appl. Sci. Technol. 6, 35–44 (2011)

    Google Scholar 

  23. Zhang, N.X.; Mao, Y.G.; Jiao, B.Y.; Shang, Y.; Han, P.R.: Sorption of anionic dye on magnesium hydroxide-coated pyrolytic bio-char and reuse by microwave irradiation. Int. J. Environ. Sci. Technol.(2013). doi:10.1007/s13762-013-0338-5

  24. Davis E.M., Chiyoda O.: Hydrothermal conversion of Y-zeolite using alkaline-earth cations. Microporous Mesoporous Mater. 32, 257–264 (1999)

    Article  Google Scholar 

  25. Sun, Y.; Fu, K.; Zhu, H.; Zhu, T.: Silica-alumina molar ratio and some factors effect on the synthesis of zeolites from fly ash. J. Coal Sci. Eng. 15, 430–433 (2009)

  26. Bhavna A.S., Chirag B.M., Ajay V.S.: Sequestration of Cu(II) and Ni(II) from wastewater by synthesized zeolitic materials: Equilibrium, kinetics and column dynamics. Chem. Eng. J. 220, 172–184 (2013)

    Article  Google Scholar 

  27. Noh J.S., Schwarz J.A.: Estimation of the point of zero charge of simple oxides by mass titration. J. Colloid Interface Sci. 130, 157–164 (1989)

    Article  Google Scholar 

  28. Treacy J.M.M., Higgins B.J.: Collection of Simulated XRD Powder Patterns for Zeolites, Fourth Revised Edition. ELSEVIER, Amsterdam (2001)

    Google Scholar 

  29. Joint committee on powder diffraction standards Index (Inorganic to the powder diffraction file), Publication PDIS-211; Newton square, PA (1971)

  30. Chandra W.P., Chris S., Hirofumi H.: Effect of the activation method on the properties and sorption behavior of bagasse fly ash-based activated carbon. Fuel Process. Technol. 102, 132–139 (2012)

    Article  Google Scholar 

  31. Denise, A.; Fungaro, Thais, V.R.: Use of sugarcane straw ash for zeolite synthesis. Int. Energy Environ. Found. 5,559–566(2014)

  32. Bhavna S., Ritesh T., Ajay S.: Equilibrium kinetics, and breakthrough curve of phenol sorption on zeolitic material derived from BFA. J. Dispers. Sci. Technol. 33, 41–51 (2012c)

    Article  Google Scholar 

  33. Eduardo R., Murilo P.M., Cleiser T.P., Joziane G.M., Emerson M.G.: Synthesis of zeolite NaA from sugarcane bagasse ash. Mater. Lett. 108, 243–246 (2013)

    Article  Google Scholar 

  34. Victor M., Qingmin J., Yuichiro K., Taizo M., Fa-Kuen S., Kevin C.W., Katsuhiko A., Yusuke Y.: Templated synthesis for nanoarchitectured porous materials bull. Chem. Soc. Jpn. 88, 1171–1200 (2015)

    Article  Google Scholar 

  35. Yanbo Z., Xiaochen G., Ruzhuang Z., Jun L.: Removal of aniline from aqueous solution using pine sawdust modified with citric acid and βCyclodextrin. Ind. Eng. Chem. Res. 53, 887–894 (2014). doi:10.1021/ie403829s

    Article  Google Scholar 

  36. Ersoy B., Çelik M.S.: Uptake of aniline and nitrobenzene from aqueous solution by organo-Zeolite. Environ. Technol. 25, 341–348 (2004). doi:10.1080/09593330409355467

    Article  Google Scholar 

  37. Fuqiang A., Xiaoqin F., Baojiao G.: Adsorption of aniline from aqueous solution using novel adsorbent PAM/SiO2. Chem. Eng. J. 151, 183–187 (2009)

    Article  Google Scholar 

  38. Rui H., Xiangke W., Songyuan D., Dadong S., Tasawar H., Ahmed A.: Application of graphitic carbon nitride for the removal of Pb(II) and aniline from aqueous solutions. Chem. Eng. J. 260, 469–477 (2015)

    Article  Google Scholar 

  39. Dadong S., Jun H., Changlun C., Guodong S., Xuemei R., Xiangke W.: Polyaniline multiwalled carbon nanotube magnetic composite prepared by plasma-induced graft technique and its application for removal of aniline and phenol. J. Phys. Chem. C 114, 21524–21530 (2010)

    Article  Google Scholar 

  40. Yanhe H., Xie Q., Shuo C., Huimin Z., Chunyue C., Yazhi Z.: Electrochemically enhanced sorption of aniline on activated carbon fibers. Sep. Purif. Technol. 50, 365–372 (2006)

    Article  Google Scholar 

  41. Yongjun W., Lijun Z., Congli G., Jiangyan M., Xinghua M., Runping H.: Sorption of copper ions and methylene blue in a single and binary system on wheat straw. J. Chem. Eng. Data. 54, 3229–3234 (2009)

    Article  Google Scholar 

  42. Wei L.X.Y., Qingxin G.: Effect of template in MCM-41 on the sorption of aniline from aqueous solution. J. Environ. Manag. 92, 2939–2943 (2011)

    Article  Google Scholar 

  43. Suresh K.B., Parasuraman S., Chandrashekar G.S.: Recent advances in processing and characterization of Periodic mesoporous MCM-41 silicate molecular sieves. Ind. Eng. Chem. Res. 40, 326–3237 (2001)

    Google Scholar 

  44. Francisco V., Manuel F.R.P., José J.M.Ó., Josés L.F.: Sorption of simple aromatic compounds on activated carbons. J. Colloid Interface Sci. 293, 128–136 (2006)

    Article  Google Scholar 

  45. von Oepen B., Kordel W., Klein W.: Sorption of nonpolar and polar compounds to soils: processes, measurement and experience with the applicability of the modified OECD guideline 106[J]. Chemosphere 27, 285–304 (1991)

    Article  Google Scholar 

  46. Martra G., Ocule R., Marchese L., Centi G., Coluccia S.: Alkali and alkaline-earth exchanged faujasites: strength of Lewis base and acid centres and cation site occupancy in Na-and BaY and Na- and BaX zeolites. Catal. Today 73, 9–83 (2002)

    Article  Google Scholar 

  47. Zhang, Y.L.; Zhang, Y.H.; Guo, W.; Tian L.Y.: Sorption characteristics and mechanisms of ammonium by coal by-products: slag, honeycomb-cinder and coal gangue. Int. J. Environ. Sci. Technol. (2013). doi:10.1007/s13762-012-0168-x

  48. Ru-Ling T., Feng-Chin W., Ruey-Shin J.: Characteristics and applications of the Lagergren’s first-order equation for sorption kinetics. J. Taiwan Inst. Chem. Eng. 41, 661–669 (2010)

    Article  Google Scholar 

  49. Yuh-shan H.: Citation review of Lagergren kinetic rate equation on sorption reactions. Scientometrics 59, 171–177 (2004)

    Article  Google Scholar 

  50. Feng-Chin W., Ru-Ling T., Shang-Chieh H., Ruey-Shin J.: Characteristics of pseudo-second-order kinetic model for liquid-phase sorpition: a mini-review. Chem. Eng. J. 151, 1–9 (2009)

    Article  Google Scholar 

  51. Hong Z., Donghong L., Yan Z., Shuping L., Zhe L.: Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J. Hazard. Mater. 167, 141–147 (2009)

    Article  Google Scholar 

  52. Walter J.W., Morris C.J.: Kinetics of Sorption on Carbon from solution. J. Sanit. Eng. Div. 89, 31–60 (1963)

    Google Scholar 

  53. Hong Z., Yang W., Yan Z., Hongmei Z., Shuping L., Mei L.: Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite. Chem. Eng. J. 143, 117–123 (2008)

    Article  Google Scholar 

  54. Doğan K., Yunus K., Mustafa T., Bulent A.: Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. J. Hazard. Mater. B 136, 604–609 (2006)

    Article  Google Scholar 

  55. Kumar V.K., Ramamurthi V., Sivanesan S.: Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J Colloid Interface Sci. 284, 14–21 (2005)

    Article  Google Scholar 

  56. Langmuir I.: The sorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 40, 1361–1367 (1918)

    Article  Google Scholar 

  57. Kavitha D., Namasivayam C.: Experimental and kinetic studies on methylene blue sorption by coir pith carbon. Biores. Tech. 98, 14–21 (2007)

    Article  Google Scholar 

  58. Weber T.W., Chakkravorti R.K.: Pore and solid diffusion models for fixed bed adsorbers. Am. Inst. Chem. J. 20, 228–238 (1974)

    Article  Google Scholar 

  59. Montra C., Saowanee R., John B.B., Vichitr R.: An sorption and kinetic study of lac dyeing on silk. Dyes Pigm. 64, 231–241 (2005)

    Article  Google Scholar 

  60. Ming-Shen C., Pang-Yen H., Hsing-Ya L.: Sorption of anionic dyes in acid solutions using chemically cross linked chitosan beads. Dyes Pigm. 60, 69–84 (2004)

    Article  Google Scholar 

  61. Arthur W.A., Alice P.G.: Physical Chemistry of Surfaces, 6th ed. Wiley, New York (1997)

    Google Scholar 

  62. Gong R., Liang J., Chen J., Huang F.: Removal of bisphenol A from aqueous solution by hydrophobic sorption of hemimicelles. Int. J. Environ. Sci. Tech. 6, 539–544 (2009)

    Article  Google Scholar 

  63. Walther, H. J.; Faust, D. S.; Aly, M. O.: Sorption processes for water treatment. Acta Hydrochim. Hydrobiol. (1988). doi:10.1002/aheh.19880160603

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavna A. Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, B.A., Abebe, A.A. & Shah, A.V. Microwave-Synthesized Barium-Impregnated Siliceous Zeolitic Material Derived from Bagasse Fly Ash for Uptake of Aniline. Arab J Sci Eng 42, 139–152 (2017). https://doi.org/10.1007/s13369-016-2083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2083-9

Keywords

Navigation