Skip to main content
Log in

Stability of Aqueous Nanofluids Containing PVP-Coated Silver Nanoparticles

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nanofluids have opened a new arena for researchers in the field of heat transfer with their exceptional heat transfer characteristics. Enhanced thermal conductivity and improved stability are the principal advantages of nanofluids for its applications in heat transfer. This paper presents an experimental investigation on the stability of silver–water nanofluids prepared by dispersing 0.1 % volume fraction of polyvinylpyrrolidone-coated silver nanoparticles in distilled water with and without the addition of surfactants. The surfactants used in the present study are polyvinylpyrrolidone and sodium dodecyl sulfate. The stability of the nanofluids was estimated from sedimentation time, pH value, zeta potential and particle size distribution. Thermal conductivity of the nanofluids was measured by thermal property analyzer. It has been found that the stability of nanofluids is influenced predominantly by the size of the particle and the surfactant characteristics. The stability of nanofluid increases with the decrease in the size of nanoparticles. Also, the stability increases with sodium dodecyl sulfate as surfactant as against polyvinylpyrrolidone. However, enhancement in the thermal conductivity is found to be higher with polyvinylpyrrolidone than with sodium dodecyl sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu D., Zhu H., Wang L., Liu L.: Critical issues in nanofluids preparation, characterization and thermal conductivity. Curr. Nanosci. 5, 101–112 (2009)

    Google Scholar 

  2. Huang, J.; Wang, X.; Long, Q.; Wen, X.; Zhou, Y.; Li, L.: Influence of pH on the stability characteristics of nanofluids. In: Proceedings of the Symposium on Photonics and Optoelectronics (SOPO’09), pp. 1–4. IEEE, Wuhan (2009). doi:10.1109/SOPO.2009.5230102

  3. Karthik R., Sree Renga Raja T., Madavan R.: Enhancement of critical characteristics of transformer oil using nanomaterials. Arab J. Sci. Eng. 38(10), 2725–2733 (2013)

    Article  Google Scholar 

  4. Wang X., Zhu D., yang S.: Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem. Phys. Lett. 470, 107–111 (2009)

    Article  Google Scholar 

  5. Wang X.-J., LI H., LI X.-F., Wang Z.-F., Fang L.: Stability of TiO2 and Al2O3 nanofluids. Chin.Phys.Lett. 28(8), 086601 (2011)

    Article  Google Scholar 

  6. Murshed, S.M.; de Castro, C.A.; Lourenco, M.J.V.: Effect of surfactant and nanoparticle clustering on thermal conductivity of aqueous nanofluids. J. Nanofluids. (2012) doi:10.1166/jon.2012.1020

  7. Hwang, Y.; Lee, J.K.; Lee, C.H.; Jung, Y.M.; Cheong, S.I.; Lee, C.G.; Ku, B.C.; Jang, S.P.: Stability and thermal conductivity of nanofluids. Thermochim. Acta. (2007). doi:10.1016/j.tca.2006.11.036

  8. Eastmen J.A., Choi S.U.S., Li S., Yu W., Thompson L.J.: Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  9. Fedele, L.; Colla, L.; Bobbo, S.; Barison, S.; Agresti, F.: Experimental stability analysis of different water-based nanofluids. Nanoscale Res Lett. (2011). doi:10.1186/1556-276X-6-300

  10. Li, D.; Fang, W.: Preparation and stability of silver/kerosene nanofluids. Nanoscale Res. Lett. (2012) doi:10.1186/1556-276X-7-362

  11. Ojha, U.; Das, S.; Chakraborty, S.: Stability, pH and viscosity relationships in zinc oxide based nanofluids subject to heating and cooling cycles. J. Mater. Sci. Eng. 4(7), 24–29 (2010)

  12. Hwang, Y; Lee, J.-K.; Lee, J.-K.; Jeong, Y.-M.; Cheong, S.-i.; Ahn, Y.-C.; Kim, S.H.: Production and dispersion stability of nanoparticles in nanofluids. Powder Tech.(2008). doi:10.1016/j.powtec.2007.11.020

  13. Xinfang, L.I; Dongsheng, Z.H.U; Xianju, W.: Experimental investigation on viscosity of Cu–H2O nanofluids. J. Wuhan Univ. Technol.-Mater. Sci. (2007) doi:10.1007/s11595-009-1048-1

  14. Salehi J.M., Heyhat M.M., Rajabpour A.: Enhancement of thermal conductivity of silver nanofluid synthesized by a one-step method with the effect of polyvinylpyrrolidone on thermal behavior. Appl. Phys. Lett. 102, 231907 (2013)

    Article  Google Scholar 

  15. Paul G., Sarkar S., Pal T., Das P.K., Manna I.: Concentration and size dependence of nano-silver dispersed water based nanofluids. J. Colloid Interface Sci. 371, 20–27 (2012)

    Article  Google Scholar 

  16. Godson L., Raja B., Mohan Lal D., Wongwises S.: Experimental investigation on the thermal conductivity and viscosity of silver-deionized Water nanofluid. Exp. Heat Transf.: J. Thermal Energy Gener., Transport, Storage, Conversion. 23(4), 317–332 (2010)

    Article  Google Scholar 

  17. Warrier, P.; Teja, T.: Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett. (2011). doi:10.1186/1556-276X-6-247

  18. Maddah, H.; Rezazadeh, M.; Maghsoudi, M.; Nasiri Kokhdan, S.: The effect of silver and aluminum oxide nanoparticles on thermophysical properties of nanofluids. J. Nanostruct. Chem. (2013). doi:10.1186/2193-8865-3-28

  19. Fang, X., Ding, Q., Fan, L.-W., Yu, Z.-T., Xu, X., Cheng, G.-H., Hu, Y.-C., Cen, K.-F.: Thermal conductivity enhancement of ethylene glycol-based suspensions in the presence of silver nanoparticles of various shapes. J. Heat Transf. 136, 034501-1-7 (2014)

  20. Das K., Duari P.R., Kundu P.K.: Solar radiation effects on Cu–Water nanofluid flow over a stretching sheet with surface slip and temperature jump. Arab. J. Sci. Eng. 39, 9015–9023 (2014). doi:10.1007/s13369-014-1380-4

    Article  Google Scholar 

  21. Kefayati G.H.R.: Effect of a magnetic field on natural convection in a nanofluid-filled enclosure with a linearly heated wall using LBM. Arab. J. Sci. Eng. 39, 4151–4163 (2014). doi:10.1007/s13369-014-1031-9

    Article  Google Scholar 

  22. Kefayati G.H.R.: Lattice Boltzmann simulation of natural convection in a square cavity with a linearly heated wall using nanofluid. Arab. J. Sci. Eng. 39, 2143–2156 (2014). doi:10.1007/s13369-013-0748-1

    Article  Google Scholar 

  23. Yazdi M.E., Moradi A., Dinarvand S.: MHD mixed convection stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid in the presence of thermal radiation. Arab. J. Sci. Eng. 39, 2251–2261 (2014). doi:10.1007/s13369-013-0792-x

    Article  MathSciNet  Google Scholar 

  24. Li X., Zhu D., Wang X.: Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J. Colloid Interface Sci. 310(2), 456–463 (2007)

    Article  Google Scholar 

  25. Murshed, S.M.S.; Leong, K.C.; Yang, C.: Enhanced thermal conductivity of TiO2-water based nanofluids, Int. J. Therm. Sci. (2005). doi:10.1016/j.ijthermalsci.2004.12.005

  26. Xie H., Wang J., Xi T., Liu Y., Ai F.: Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 91, 4568–4572 (2002)

    Article  Google Scholar 

  27. Wen D., Ding Y.: Formulation of nanofluids for natural convective heat transfer applications. Int. J. Heat Fluid Flow. 26, 855–864 (2005)

    Article  Google Scholar 

  28. Abdelrazek E.M., Ragab H.M., Abdelaziz M.: Physical characterization of poly (vinyl pyrrolidone) and gelatin blend films doped with magnesium chloride. Plastic Polymer Tech. 2(1), 1–8 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Iyahraja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyahraja, S., Rajadurai, J.S. Stability of Aqueous Nanofluids Containing PVP-Coated Silver Nanoparticles. Arab J Sci Eng 41, 653–660 (2016). https://doi.org/10.1007/s13369-015-1707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1707-9

Keywords

Navigation