Skip to main content
Log in

Electrochemical Properties of AZ80 Mg Alloy in Phosphate Buffer Solutions

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, passive behaviour and semiconducting properties of AZ80 Mg alloy in phosphate buffer solutions of various pH values ranging from 10.69 to 13.05 were studied. Corrosion and passive current densities measured from potentiodynamic polarization plots, defect density drawn from Mott-Schottky analysis, and finally the resistance and capacitance of the passive films estimated from electrochemical impedance spectroscopy (EIS) were all determined. Potentiodynamic polarization results indicated that increasing pH led to decrease both corrosion and passive current densities. Mott-Schottky analysis revealed that the passive films displayed n-type semiconductive characteristics and the donor densities increased with increasing the pH from 10.69 to 13.05. EIS results showed that the thickness of the passive film increased with increasing the pH. In conclusion, increasing pH values offered better conditions for a thicker passive film formation on AZ80 Mg alloy in phosphate buffer solutions with higher protection behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pinto R.; Ferreira M.G.S.; Carmezim M.J.; Montemor M.F.: Passive behavior of magnesium alloys (Mg–Zr) containing rare-earth elements in alkaline media. Electrochim. Acta 55, 2482–2489 (2010)

    Article  Google Scholar 

  2. Yao H.B.; Li Y.; Wee A.T.S.: Passivity behavior of melt-spun Mg–Y Alloys. Electrochim. Acta 48, 4197–4204 (2003)

    Article  Google Scholar 

  3. Gray J.E.; Luan B.: Protective coatings on magnesium and its alloys—a critical review. J. Alloys Compd. 336, 88–113 (2002)

    Article  Google Scholar 

  4. Wang L.; Shinohara T.; Zhang B.-P.: Electrochemical behaviour of AZ61 magnesium alloy in dilute NaCl solutions. Mater. Des. 33, 345–349 (2012)

    Article  Google Scholar 

  5. El-Taib Heakal F.; Fekry A.M.; Jibril M.A.E.B.: Electrochemical behavior of the Mg alloy AZ91D in borate solutions. Corros. Sci. 53, 1174–1185 (2011)

    Article  Google Scholar 

  6. Liu M.; Uggowizer P.J.; Nagasekhar A.V.; Schmutz P.; Easton M.; Song G.-L.; Atrens A.: An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing. Corros. Sci. 51, 602–619 (2009)

    Article  Google Scholar 

  7. Zhao M.-C.; Schmutz P.; Brunner S.; Liu M.; Song G.-L.; Atrens A.: An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing. Corros. Sci. 51, 1277–1292 (2009)

    Article  Google Scholar 

  8. Ballerini G.; Bardi U.; Bignucolo R.; Ceraolo G.: About some corrosion mechanisms of AZ91D magnesium alloy. Corros. Sci. 47, 2173–2184 (2005)

    Article  Google Scholar 

  9. Liu L.J.; Schlesinger M.: Corrosion of magnesium and its alloys. Corros. Sci. 51, 1733–1737 (2009)

    Article  Google Scholar 

  10. Pourbaix M.: Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd edn. NACE, Houston (1974)

    Google Scholar 

  11. Carboneras M.; Lopez M.D.; Rodrigo P.; Campo M.; Torres B.; Otero E.: Corrosion behaviour of thermally sprayed Al and Al/SiCp composite coatings on ZE41 magnesium alloy in chloride medium. Corros. Sci. 52, 761–768 (2010)

    Article  Google Scholar 

  12. Mizutani Y.; Kim S.J.; Ichino R.; Okido M.: Anodizing of Mg alloys in alkaline solutions. Surf. Coat. Technol. 169, 143–146 (2003)

    Article  Google Scholar 

  13. Jiang Y.F.; Liu L.F.; Zhai C.Q.; Zhu Y.P.; Ding W.J.: Corrosion behavior of pulse-plated Zn–Ni alloy coatings on AZ91 magnesium alloy in alkaline solutions. Thin Solid Films 484, 232–237 (2005)

    Article  Google Scholar 

  14. Arrabal R.; Matykina E.; Viejo F.; Skeldon P.; Thompson G.E.: Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corros. Sci. 50, 1744–1752 (2008)

    Article  Google Scholar 

  15. Feliu S. Jr, Pardo A.; Merino M.C.; Coy A.E.; Viejo F.; Arrabal R.: Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys. Appl. Sur. Sci. 255, 4102–4108 (2009)

    Article  Google Scholar 

  16. Harada Y.; Kumai S.: Effect of ceramics coating using sol–gel processing on corrosion resistance and age hardening of AZ80 magnesium alloy substrate. Surf. Coat. Technol. 228, 59–67 (2013)

    Article  Google Scholar 

  17. Andreatta F.; Apachitei I.; Kodentsov A.A.; Dzwonczyk J.; Duszczyk J.: Volta potential of second phase particles in extruded AZ80 magnesium alloy. Electrochim. Acta 51, 3551–3557 (2006)

    Article  Google Scholar 

  18. Ishizaki T.; Masuda Y.; Teshima K.: Composite film formed on magnesium alloy AZ31 by chemical conversion from molybdate/phosphate/fluorinate aqueous solution toward corrosion protection. Surf. Coat. Technol. 217, 76–83 (2013)

    Article  Google Scholar 

  19. Fattah-alhosseini A.; Sabaghi Joni M.: Investigation of the passive behaviour of AZ31B alloy in alkaline solutions. J. Magnesium Alloys. 2, 175–180 (2014)

    Article  Google Scholar 

  20. Shi Z.; Liu M.; Atrens A.: Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52, 579–588 (2010)

    Article  Google Scholar 

  21. El-Taib Heakal F.; Fekry A.M.; Fatayerji M.Z.: Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions. Electrochim. Acta 54, 1545–1557 (2009)

    Article  Google Scholar 

  22. Burstein G.T.: A hundred years of Tafel’s Equation: 1905–2005. Corros. Sci. 47, 2858–2870 (2005)

    Article  Google Scholar 

  23. Xia S.J.; Yue R.; Rateick R.G. Jr, Briss V.I.: Electrochemical studies of AC/DC anodized Mg alloy in NaCl solution. J. Electrochem. Soc. 151, B179–B187 (2004)

    Article  Google Scholar 

  24. Zhang T.; Shao Y.; Meng G.; Li Y.; Wang F.: Effects of hydrogen on the corrosion of pure magnesium. Electrochim. Acta 52, 1323–1328 (2006)

    Article  Google Scholar 

  25. Zhang T.; Li Y.; Wang F.: Roles of b phase in the corrosion process of AZ91D magnesium alloy. Corros. Sci. 48, 1249–1264 (2006)

    Article  Google Scholar 

  26. Duan H.; Yan C.; Wang F.: Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochim. Acta 52, 3785–3793 (2007)

    Article  Google Scholar 

  27. de Oliveira M.C.L.; Pereira V.S.M.; Correa O.V.; de Lima N.B.; Antunes R.A.: Correlation between the corrosion resistance and the semiconducting properties of the oxide film formed on AZ91D alloy after solution treatment. Corros. Sci. 69, 311–321 (2013)

    Article  Google Scholar 

  28. Chen J.; Wang J.Q.; Han E.H.; Dong J.H.; Ke W.: States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution. Corros. Sci. 50, 1292–1305 (2008)

    Article  Google Scholar 

  29. Li Y.; Zhang T.; Wang F.H.: Effect of microcrystallization on corrosion resistance of AZ91D alloy. Electrochim. Acta 51, 2845–2850 (2006)

    Article  Google Scholar 

  30. Fattah-alhosseini A.; Soltani F.; Shirsalimi F.; Ezadi B.; Attarzadeh N.: The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM). Corros. Sci. 53, 3186–3192 (2011)

    Article  Google Scholar 

  31. Fattah-alhosseini A.; Saatchi A.; Golozar M.A.; Raeissi K.: The passivity of AISI 316L stainless steel in 0.05M H2 SO4. J. Appl. Electrochem. 40, 457–461 (2010)

    Article  Google Scholar 

  32. Macdonald D.D.: The passive state in our reactive metals-based civilization. Arab. J. Sci. Eng. 37, 1143–1185 (2012)

    Article  Google Scholar 

  33. Macdonald D.D.: On the tenuous nature of passivity and its role in the isolation of HLNW. J. Nuclear Mater. 379, 24–32 (2008)

    Article  Google Scholar 

  34. Fattah-alhosseini A.: Modified point defect model for the electrochemical behavior of the passive films formed on alloy C (UNS N10002) in Borax solutions. Arab. J. Sci. Eng. 40, 63–67 (2015)

    Article  Google Scholar 

  35. Jovic V.D.; Jovic B.M.: The influence of the conditions of the ZrO2 passive film formation on its properties in 1 M NaOH. Corros. Sci. 50, 3063–3069 (2008)

    Article  Google Scholar 

  36. Nam N.D.; Bian M.Z.; Forsyth M.; Seter M.; Tan M.; Shin K.S.: Effect of calcium oxide on the corrosion behaviour of AZ91 magnesium alloy. Corros. Sci. 64, 263–271 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fattah-alhosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattah-alhosseini, A., Asgari, H. Electrochemical Properties of AZ80 Mg Alloy in Phosphate Buffer Solutions. Arab J Sci Eng 41, 169–175 (2016). https://doi.org/10.1007/s13369-015-1690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1690-1

Keywords

Navigation