Skip to main content
Log in

Analysis of a Cascade Refrigeration System (CRS) by Using Different Refrigerant Couples Based on the Exergetic Performance Coefficient (EPC) Criterion

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A theoretical performance analysis based on the exergetic performance coefficient (EPC) criterion has been carried out for a cascade refrigeration system for different refrigerant couples. The EPC criterion is defined as the ratio of exergy output to the total exergy destruction rate (or loss rate of availability). According to the results of the study, the refrigerant couples R23-R717 show the best performance in terms of EPC and coefficient of performance from among the other refrigerant couples (R23-R290, R23-R404A, R23-R507A and R23-R717). In the analysis, R23 was used for the lower temperature cycle and the other refrigerants are used for the higher temperature cycle. The effects of the temperature difference in the cascade condenser and the evaporator and condenser temperature on the EPC, coefficient of performance and exergy destructions have been thoroughly investigated for the refrigerant couple R23-R717.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

COP:

Coefficient of performance

Ė x :

Exergy rate (kW)

e X :

Specific exergy (kj/kg)

ĖxD :

Exergy destruction rate (kW)

EPC:

Exergetic performance coefficient

h:

Specific enthalpy (kj/kg)

i :

ith component

in:

Input

:

Mass flow rate of the refrigerant (kg/s)

out:

Output

\({\dot{Q}}\) :

Rate of heat transfer (kW)

s :

Specific entropy (kj/kgK)

T :

Temperature (K)

VCR:

Vapor compression refrigerator

:

Electrical power input (kW)

x:

Quality

ε :

Exergy efficiency

η :

Efficiency

ci:

Isentropic compressor

comp:

Compressor

cond:

Condenser

cs:

Cooled space

em:

Electrical

exva:

Expansion valve

evap:

Evaporator

m:

Mechanical

tot:

Total

0:

Environment conditions

Cascon:

Cascade condenser

LTC:

Low-temperature cycle

HTC:

High-temperature cycle

*:

Maximum EPC conditions

PH:

Physical

References

  1. Cengel, Y.A.; Boles, M.A.: Thermodynamics: An Engineering Approach, 5th Ed. pp. 616–620, USA, McGraw-Hill (2006)

  2. Halimic E., Ross E., Agnew B., Anderson A., Pottes I.: A comparison of the operating performance of alternative refrigerants. Appl. Thermal Eng., 23, 1441–1451 (2003)

    Article  Google Scholar 

  3. SpatZ M.W., Motta S.F.Y.: An evaluation of options for replacing HCFC-22 in medium temperature refrigeration systems. Int. J. Refrig. 27, 475–483 (2004)

    Article  Google Scholar 

  4. Xuan Y., Chen G.: Experimental study on HFC-161 mixture as an alternative refrigerant to R502. Int. J. Refrig. 28, 436–441 (2005)

    Article  Google Scholar 

  5. Fatouh M., El Kafafy M.: of propane/commercial butane mixtures as possible alternatives to R134a in domestic refrigerators. Energy Convers. Manag. 47, 2644–2658 (2006)

    Article  Google Scholar 

  6. Han X.H., Wang Q., Zhu Z.W., Chen G.M.: Cycle performance study on R32/R125/R161 as an alternative refrigerant to R407C. Appl. Thermal Eng. 27, 2559–2565 (2007)

    Article  Google Scholar 

  7. Mani K., Selladurai V.: Experimental analysis of a new refrigerant mixture as drop-in replacement for CFC12 and HFC134a. Int. J. Thermal Sci. 47, 1490–1495 (2008)

    Article  Google Scholar 

  8. Kilicarslan A., Hosoz M.: Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples. Energy Convers. Manag. 51, 2947–2954 (2010)

    Article  Google Scholar 

  9. Niu B., Zhang Y.: Experimental study of the refrigeration cycle performance for the R744/R290 mixtures. Int. J. Refrig. 30, 37–42 (2007)

    Article  Google Scholar 

  10. Rezayan O., Behbahaninia A.: A Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems. Energy, 36, 888–895 (2011)

    Article  Google Scholar 

  11. Dopazo J.A., Seara J.F., Sieres J., Uhía F.J.: Theoretical analysis of a CO2–NH3 cascade refrigeration system for cooling applications at low temperatures. Appl. Thermal Eng. 29, 1577–1583 (2009)

    Article  Google Scholar 

  12. Parekh A.D., Tailor P.R.: Thermodynamic analysis of R507A-R23 cascade refrigeration system. World Acad. Sci. Eng. Technol. 57, 992–996 (2011)

    Google Scholar 

  13. Getu H.M., Bansal P.K.: Thermodynamic analysis of an R744–R717 cascade refrigeration system. Int. J. Refrig. 31, 45–54 (2008)

    Article  Google Scholar 

  14. Bansal P.K., Jain S.: Cascade systems: past, present, and future. ASHRAE Trans 11(1), 245–252 (2007)

    Google Scholar 

  15. Lee T.S., Liu C.H., Chen T.W.: Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems. Int. J. Refrig. 29, 1100–1108 (2006)

    Article  Google Scholar 

  16. Ust, Y.; Akkaya, A.V.; Safa, A.: Analysis of a vapor compression refrigeration system via exergetic performance coefficient (EPC) criterion. J. Energy Inst. 84, 2 (2011)

  17. Aprea C., Renno C., Safa A.: Experimental comparison of R22 with R417A performance in a vapour compression refrigeration plant subjected to a cold store. Energy Convers. Manag. 45, 1807–1819 (2004)

    Article  Google Scholar 

  18. Kotas T.J.: The Exergy Method Of Thermal Plant Analysis. Butterworths, London (1985)

    Google Scholar 

  19. Kabul A., Kizilkan O., Yakut K.A.: Performance and exergetic analysis of vapor compression refrigerator system with an internal heat exchanger using a hydrocarbon, isobutane (R600a). Int. J. Energy Res. 32, 32–824 (2008)

    Article  Google Scholar 

  20. Morosuk, T.; Tsatsaronis, T.; Schult, M.: Conventional and advanced exergetic analyses: theory and application. Arab. J. Sci. Eng. 38, 2 (2013)

  21. Bejan A., Tsatsaronis G., Moran M.: Thermal Design and Optimization. Wiley, New York (1996)

    MATH  Google Scholar 

  22. Designation and safety classification of refrigerants. ASHRAE Handbook-Fundamentals, Ch. 29 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasin Ust.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ust, Y., Karakurt, A.S. Analysis of a Cascade Refrigeration System (CRS) by Using Different Refrigerant Couples Based on the Exergetic Performance Coefficient (EPC) Criterion. Arab J Sci Eng 39, 8147–8156 (2014). https://doi.org/10.1007/s13369-014-1335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1335-9

Keywords

Navigation