Skip to main content

Advertisement

Log in

Multiple-Effect Evaporators in the Food Industry: Fundamentals, Design, Simulation, Control, and Applications

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Evaporators are one of the most important equipment in the food process industries such as sugar, fruit juices, dairy products, edible oils, tomato paste, and coffee. They need a lot of energy in the form of steam from boiler and it is necessary to minimize their energy consumption. One of the best strategies for this purpose is the design and application of multiple-effect evaporators (MEEs), in which the vapor from one stage (effect) is the heating medium for the next stage. There are various configurations and designs for MEEs and they can also be equipped with vapor compression systems and steam ejectors to further reduce the energy consumption and increase their economic efficiency. This article is covering the fundamentals, design, simulation, control, and application of MEEs in various food industries for the first time with discussing recent advances in this field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Heat transfer area

A E :

Equal heat transfer area for all effects

B :

Boolean matrix

°Bx:

Degrees Brix

Cp :

Specific heat capacity

D(i) :

Function of mass flow rate of heating medium

H :

Total enthalpy

h L :

Boiling convective coefficient

h V :

Condensing convective coefficient

i :

Index of effect in a MEE sequence

F :

Mass flow rate of liquid in a MEE

f(x,y):

Particular function for the mass balance

G :

Dimensionless mass rate of the falling-film

G C :

Dimensionless mass rate of condensing vapor

G(i) :

Function for the flow direction of the liquid

g:

Gravity acceleration

g(i) :

Function related to flow direction

j :

Index of effect in a MEE sequence

k :

Index of effect in a MEE sequence

L :

Mass of liquid that leaves one effect

LT :

Length of the tube

M:

Mass charge into the evaporator

M(x,t):

Mass of the falling-film

M Evap(x,t):

Mass evaporated from the falling-film

N T :

Number of tubes per effect

Nu:

Nusselt number

n :

Number of effects in a MEE

P :

Pressure of vapor

P M :

Pressure of discharge vapor

P S :

Pressure of motive steam

P T :

Pressure of input vapor

Pr:

Prandtl number

Q :

Heat flow rate

q :

Heat flux

R :

Vapor ration

Re:

Reynolds number

S :

Mass flow rate of motive steam

T :

Temperature of effect

T Film :

Temperature of the falling-film

Ts :

Temperature of heating medium

T sat :

Temperature at saturation

T wall :

Temperature of the wall

U :

Overall heat transfer coefficient

V :

Mass flow rate of vapor in a MEE

V T :

Mass flow rate of vapor from the effect that feeds the thermo-compressor

v :

Velocity of descent for a falling-film

W :

Dimensionless evaporated mass rate of water from the falling-film

W C :

Dimensionless condensate mass rate of water

X :

Dimensionless mass fraction of solids

x :

Mass fraction of solids

Y :

Matrix of fraction of liquid that leaves j-effect to enters into i-effect

y:

Fraction of liquid that leaves j-effect to enters into i-effect

Z:

Parameter of correlation

z:

Direction of flow for a falling-film

L:

Liquid phase

V:

Vapor phase

F:

Condition of feed stream

Γ:

Wetting rate

Δ:

Boiling point rise

ΔT i :

Difference of temperature

ε :

Calculated error

ε A :

Calculated error of heat transfer area

ε T :

Calculated error of temperature

ε U :

Calculated error of overall heat transfer coefficient

ε x :

Calculated error of mass fraction of solids

η :

Dimensionless parameter

η C :

Dimensionless parameter

η T :

Dimensionless parameter

κ :

Thermal conductivity

λ :

Specific condensation enthalpy

μ :

Dynamic viscosity

ρ :

Density

σ :

Surface tension

Φ:

Function of correlation

ϕ T :

Diameter of the tube

ϕ U :

Upper diameter of frustum

ϕ F :

Lower diameter of frustum

ξ :

Thermal resistance of the fouling

CFD:

Computational Fluid Dynamics

CIP:

Cleaning in place

MEEs:

Multiple-Effect Evaporators

MEFFE:

Multiple-Effect Falling-Film Evaporators

PID:

Proportional-Integral-Derivative control

References

  1. Cassano A, Rastogi NK, Basile A (2020) 10 - Reverse osmosis in food processing. In: Basile A, Cassano A, Rastogi NK (eds) Current Trends and Future Developments on (Bio-) Membranes. Elsevier, pp 229–257

    Chapter  Google Scholar 

  2. El-Gazzar FE, Marth EH (1991) Ultrafiltration and reverse osmosis in dairy technology: a review. J Food Prot 54(10):801–809. https://doi.org/10.4315/0362-028x-54.10.801

    Article  PubMed  Google Scholar 

  3. Deshwal GK, Akshit K, S., Sharma, H., Singh, A. K., Panjagari, N. R., et al (2021) Applications of reverse osmosis in dairy processing: an Indian perspective. J Food Sci Technol 58(10):3676–3688. https://doi.org/10.1007/s13197-020-04958-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Morison KR, Hartel RW (2019) Evaporation and freeze concentration. In D. R. Heldman, D. B. Lund & C. M. Sabliov (Eds.), Handbook of food engineering. Boca Raton: Taylor & Francis Group

  5. Miyawaki O, Inakuma T (2021) Development of progressive freeze concentration and its application: a review. Food Bioprocess Technol 14(1):39–51. https://doi.org/10.1007/s11947-020-02517-7

    Article  CAS  Google Scholar 

  6. Cokgezme OF, Sabanci S, Cevik M, Yildiz H, Icier F (2017) Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system. J Food Eng 207:1–9. https://doi.org/10.1016/j.jfoodeng.2017.03.015

    Article  CAS  Google Scholar 

  7. Icier F, Yildiz H, Sabanci S, Cevik M, Cokgezme OF (2017) Ohmic heating assisted vacuum evaporation of pomegranate juice: electrical conductivity changes. Innov Food Sci Emerg Technol 39:241–246. https://doi.org/10.1016/j.ifset.2016.12.014

    Article  CAS  Google Scholar 

  8. Colak Gunes N, Gungor E, Gunes M (2021) Solar process heat for sustainable production of concentrated peach puree. J Food Process Eng 44(7):e13744. https://doi.org/10.1111/jfpe.13744

    Article  CAS  Google Scholar 

  9. Tao Y, Yan B, Zhang N, Wang M, Zhao J, Zhang H et al (2021) Microwave vacuum evaporation as a potential technology to concentrate sugar solutions: a study based on dielectric spectroscopy. J Food Eng 294:110414. https://doi.org/10.1016/j.jfoodeng.2020.110414

    Article  CAS  Google Scholar 

  10. Sun D-W (2019) Computational fluid dynamics in food processing (2nd ed.): CRC Press

  11. Norton T, Sun D-W (2006) Computational fluid dynamics (CFD) – an effective and efficient design and analysis tool for the food industry: a review. Trends Food Sci Technol 17(11):600–620. https://doi.org/10.1016/j.tifs.2006.05.004

    Article  CAS  Google Scholar 

  12. Norton T, Tiwari B, Sun D-W (2013) Computational fluid dynamics in the design and analysis of thermal processes: a review of recent advances. Crit Rev Food Sci Nutr 53(3):251–275. https://doi.org/10.1080/10408398.2010.518256

    Article  PubMed  Google Scholar 

  13. Wang L, Sun D-W (2003) Recent developments in numerical modelling of heating and cooling processes in the food industry–a review. Trends Food Sci Technol 14(10):408–423

    Article  CAS  Google Scholar 

  14. Verma OP, Manik G, Sethi SK (2019) A comprehensive review of renewable energy source on energy optimization of black liquor in MSE using steady and dynamic state modeling, simulation and control. Renew Sustain Energy Rev 100:90–109. https://doi.org/10.1016/j.rser.2018.10.002

    Article  Google Scholar 

  15. Minton PE (1986) Handbook of evaporation technology: Noyes Publications

  16. Ibarz A, Barbosa-Cánovas GV (2010) Unit operations in food engineering: CRC Press

  17. Couper JR, Penney WR, Fair JR, Walas SM (2012) Chemical process equipment. selection and design: Butterworth-Heinemann

  18. Saravacos G, Kostaropoulos AE (2016) Handbook of food processing equipment: Springer.

  19. Kern DQ (2017) Process Heat Transfer: Echo Point Books & Media

  20. McCabe WL, Smith JC, Harriott P (2017) Unit operations of chemical engineering: McGraw-Hill

  21. Green DW, Southard MZ (2018) Perry’s chemical engineers’ handbook (9th ed.): McGraw-Hill

  22. Yanniotis S, Pilavachi PA (1994) Energy consumption of absorption-driven multiple-effect evaporators. J Food Eng 23(4):543–554. https://doi.org/10.1016/0260-8774(94)90111-2

    Article  Google Scholar 

  23. Smith R, Jones PS (1990) The optimal design of integrated evaporation systems. Heat Recovery Syst CHP 10(4):341–368. https://doi.org/10.1016/0890-4332(90)90086-Y

    Article  CAS  Google Scholar 

  24. Morison KR, Hartel RW (2007) Evaporation and freeze concentration. In D. R. Heldman & D. B. Lund (Eds.), Handbook of food engineering. Boca Raton: Taylor & Francis Group

  25. Al-Najem NM, Darwish MA, Youssef FA (1997) Thermovapor compression desalters: energy and availability — analysis of single- and multi-effect systems. Desalination 110(3):223–238. https://doi.org/10.1016/S0011-9164(97)00101-X

    Article  CAS  Google Scholar 

  26. Galván-Ángeles E, Díaz-Ovalle CO, Ramos-Ojeda E, Herrera-Enciso F (2012) Interfaz para el diseño de evaporadores de película descendente de múltiple efecto para la industria alimentaria. Paper presented at the II Congreso Internacional AMIDIQ, San José del Cabo, BCS, México

  27. Power RB (1994) Steam jet ejectors for the process industries. McGraw-Hill Inc, New York

    Google Scholar 

  28. Sharan P, Bandyopadhyay S (2016) Integration of thermo-vapor compressor with multiple-effect evaporator. Appl Energy 184:560–573. https://doi.org/10.1016/j.apenergy.2016.10.037

    Article  CAS  Google Scholar 

  29. El-Dessouky H, Ettouney H, Alatiqi I, Al-Nuwaibit G (2002) Evaluation of steam jet ejectors. Chem Eng Process 41:551–561. https://doi.org/10.1016/S0255-2701(01)00176-3

    Article  CAS  Google Scholar 

  30. Li X, Wang T, Day B (2010) Numerical analysis of the performance of a thermal ejector in a steam evaporator. Appl Therm Eng 30(17–18):2708–2717. https://doi.org/10.1016/j.applthermaleng.2010.07.022

    Article  CAS  Google Scholar 

  31. Sharifi N, Boroomand M, Sharifi M (2013) Numerical assessment of steam nucleation on thermodynamic performance of steam ejectors. Appl Therm Eng 52(2):449–459. https://doi.org/10.1016/j.applthermaleng.2012.12.003

    Article  Google Scholar 

  32. Ocon-García J, Tojo-Barreiro G (1980) Problemas de Ingeniería Química: Operaciones Básicas: Aguilar

  33. Stewart G, Beveridge GSG (1977) Steady-state cascade simulation in multiple effect evaporation. Comput Chem Eng 1(1):3–9. https://doi.org/10.1016/0098-1354(77)80002-1

    Article  CAS  Google Scholar 

  34. Nishitani H, Kunugita E (1979) The optimal flow pattern of mutieffect evaporator systems. Comput Chem Eng 3:261–268. https://doi.org/10.1016/0098-1354(79)80044-7

    Article  CAS  Google Scholar 

  35. Radovic LR, Tasic AZ, Frosdanic DK, Djordevic BD, Valeric VJ (1979) Computer design and analysis of operation of a multiple-effect evaporator system in the sugar industry. Industrial Engng Chem Proc Des Dev 18:318–323. https://doi.org/10.1021/i260070a026

    Article  CAS  Google Scholar 

  36. Angeletti S, Moresi M (1983) Modelling of multiple-effect falling-film evaporators. Int J Food Sci Technol 18(5):539–563. https://doi.org/10.1111/j.1365-2621.1983.tb00296.x

    Article  Google Scholar 

  37. Ayangbile WO, Okeke EO, Beveridge GSG (1984) Generalised steady-state cascade simulation algorithm in multiple-effect evaporation. Comput Chem Eng 8(3–4):235–242. https://doi.org/10.1016/0098-1354(84)87011-8

    Article  CAS  Google Scholar 

  38. Lambert RN, Joye DD, Koko FW (1987) Design calculations for multiple-effect evaporators. 1. Linear method. Ind Eng Chem Res 26(1):100–104. https://doi.org/10.1021/ie00061a019

    Article  CAS  Google Scholar 

  39. Koko FW, Joye DD (1987) Design calculations for multiple-effect evaporators. 2. Comparison of linear and nonlinear methods. Ind Eng Chem Res 26(1):104–107. https://doi.org/10.1021/ie00061a020

    Article  CAS  Google Scholar 

  40. Zain OS, Kumar S (1996) Simulation of a multiple effect evaporator for concentrating caustic soda solution-computational aspects. J Chem Eng Jpn 29(5):889–893. https://doi.org/10.1252/jcej.29.889

    Article  CAS  Google Scholar 

  41. Balkan F, Colak N, Hepbasli A (2005) Performance evaluation of a triple-effect evaporator with forward feed using exergy analysis. Int J Energy Res 29(5):455–470. https://doi.org/10.1002/er.1074

    Article  Google Scholar 

  42. Bapat SM, Majali VS, Ravindranath G (2013) Exergetic evaluation and comparison of quintuple effect evaporation units in Indian sugar industries. Int J Energy Res 37(12):1415–1427. https://doi.org/10.1002/er.2940

    Article  Google Scholar 

  43. Sogut Z, Ilten N, Oktay Z (2010) Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production. Energy 35(9):3821–3826. https://doi.org/10.1016/j.energy.2010.05.035

    Article  Google Scholar 

  44. Mojarab Soufiyan M, Dadak A, Hosseini SS, Nasiri F, Dowlati M, Tahmasebi M et al (2016) Comprehensive exergy analysis of a commercial tomato paste plant with a double-effect evaporator. Energy 111:910–922. https://doi.org/10.1016/j.energy.2016.06.030

    Article  Google Scholar 

  45. Kaya D, Ibrahim Sarac H (2007) Mathematical modeling of multiple-effect evaporators and energy economy. Energy 32(8):1536–1542. https://doi.org/10.1016/j.energy.2006.09.002

    Article  Google Scholar 

  46. Verma OP, Mohammed TH, Shubham M, Gaurav M (2016) Mathematical Modeling of multistage evaporator system in Kraft recovery process. Paper presented at the Proceedings of Fifth International Conference on Soft Computing for Problem Solving, Singapore

  47. Bhargava R, Khanam S, Mohanty B, Ray AK (2008) Selection of optimal feed flow sequence for a multiple effect evaporator system. Comput Chem Eng 32(10):2203–2216. https://doi.org/10.1016/j.compchemeng.2007.10.012

    Article  CAS  Google Scholar 

  48. Bhargava R, Khanam S, Mohanty B, Ray AK (2008) Simulation of flat falling film evaporator system for concentration of black liquor. Comput Chem Eng 32(12):3213–3223. https://doi.org/10.1016/j.compchemeng.2008.05.012

    Article  CAS  Google Scholar 

  49. Kumar D, Kumar V, Singh VP (2010) To study the parametric effects on optimality of various feeding sequences of a multieffect evaporators in paper industry using mathematical modeling and simulation with MATLAB. Int J Chem Biol Eng 3(3):129–136

    Google Scholar 

  50. Díaz-Ovalle C, Galván-Ángeles E, Ramos-Ojeda E, Castillo-Borja F (2013) Metodología para el diseño óptimo de evaporadores de película descendente [An approach for optimal design in falling-film evaporators]. Avances en Ciencias e Ingeniería 4(3):49–61

    Google Scholar 

  51. Galván-Ángeles E, Díaz-Ovalle CO, González-Alatorre G, Castrejón-González EO, Vázquez-Román R (2015) Effect of thermo-compression on the design and performance of falling-film multi-effect evaporator. Food Bioprod Process 96:65–77. https://doi.org/10.1016/j.fbp.2015.07.004

    Article  Google Scholar 

  52. Jyoti G, Khanam S (2014) Simulation of heat integrated multiple effect evaporator system. Int J Therm Sci 76:110–117. https://doi.org/10.1016/j.ijthermalsci.2013.08.016

    Article  Google Scholar 

  53. Chantasiriwan S (2015) Effects of cooling water flow rate and temperature on the performance of a multiple-effect evaporator. Chem Eng Commun 202(5):622–628. https://doi.org/10.1080/00986445.2013.858040

    Article  CAS  Google Scholar 

  54. Chantasiriwan S (2017) Determination of optimum vapor bleeding arrangements for sugar juice evaporation process. J Food Process Eng, in PRESS 1–8. https://doi.org/10.1111/jfpe.12616

  55. Chen T, Ruan Q (2016) Modeling and energy reduction of multiple effect evaporator system with thermal vapor compression. Comput Chem Eng 92:204–215. https://doi.org/10.1016/j.compchemeng.2016.05.011

    Article  CAS  Google Scholar 

  56. Verma OP, Suryakant, Manik G (2017) Solution of SNLAE model of backward feed multiple effect evaporator system using genetic algorithm approach. Int J Syst Assur Eng Manag 8(1):63–78. https://doi.org/10.1007/s13198-016-0533-0

    Article  Google Scholar 

  57. Chen H (1997) Heat transfer and fouling in film evaporators with rotating surfaces. Massey University, Palmerston North

    Google Scholar 

  58. Jebson RS, Chen H (1997) Performances of falling film evaporators on whole milk and a comparison with performance on skim milk. J Dairy Res 64(01):57–67. https://doi.org/10.1017/S0022029996001963

    Article  CAS  Google Scholar 

  59. Schwartzbeg HG (1989) Food property effects in evaporation. In: Singh RP, Medina AG (eds) Food properties and Computer-Aided Engineering of Food processing systems. Springer Verlag, pp 443–470

    Chapter  Google Scholar 

  60. Cyklis P (2017) Industrial scale engineering estimation of the heat transfer in falling film juice evaporators. Appl Therm Eng 123:1365–1373. https://doi.org/10.1016/j.applthermaleng.2017.05.194

    Article  Google Scholar 

  61. Paramalingam S, Winchester J, Marsh C (2000) On the fouling of falling film evaporators due to film break-up. Food Bioprod Process 78(2):79–84. https://doi.org/10.1205/096030800532770

    Article  Google Scholar 

  62. Adib TA, Heyd B, Vasseur J (2009) Experimental results and modeling of boiling heat transfer coefficients in falling film evaporator usable for evaporator design. Chem Eng Process 48(4):961–968. https://doi.org/10.1016/j.cep.2009.01.004

    Article  CAS  Google Scholar 

  63. Hoffman P (2004) Plate evaporators in food industry–theory and practice. J Food Eng 61(4):515–520. https://doi.org/10.1016/S0260-8774(03)00296-6

    Article  Google Scholar 

  64. Nukiyama S (1934) The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. J Japan Soc Mech Engrs 37(207):367

    Google Scholar 

  65. Nukiyama S (1966) The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int J Heat Mass Transf 9(12):1419–1433. https://doi.org/10.1016/0017-9310(66)90138-4

    Article  Google Scholar 

  66. Nukiyama S (1984) Memories of my research on boiling. Int J Heat Mass Transf 27(12):955–957. https://doi.org/10.1016/0017-9310(84)90111-X

    Article  Google Scholar 

  67. Adib TA, Vasseur J (2008) Bibliographic analysis of predicting heat transfer coefficients in boiling for applications in designing liquid food evaporators. J Food Eng 87:149–161. https://doi.org/10.1016/j.jfoodeng.2007.12.013

    Article  Google Scholar 

  68. Chen SL, Gerner FM, Tien CL (1987) General film condensation correlations. Exp Heat Transfer 1(2):93–107. https://doi.org/10.1080/08916158708946334

    Article  Google Scholar 

  69. Pitts D, Sissom L (1998) Heat transfer: McGraw-Hill

  70. Hsu YY, Westwater JW (1958) Film boiling from vertical tubes. AIChE J 4(1):58–62. https://doi.org/10.1002/aic.690040112

    Article  CAS  Google Scholar 

  71. Floudas CA (1995) Nonlinear and mixed-integer optimization. Fundam Appl

  72. Edgar TF, Himmelblau DM, Lasdon LS (2001) Optimization of chemical processes: McGraw-Hill, Inc

  73. Diwekar U(2008) Introduction to applied optimization: Springer Verlag

  74. Floudas CA, Pardalos PM (2009) Encyclopedia of optimization: Springer

  75. Biegler LT (2010) Nonlinear programming: concepts, algorithms, and applications to chemical processes: SIAM

  76. Bazaraa MS, Sherali HD, Shetty CM (2013) Non-linear programming: theory and algorithms: Wiley and Sons

  77. Rao SS (2019) Engineering optimization: theory and practice: Wiley and Sons

  78. Yang X-S (2008) Introduction mathematical optimization-from linear programming to metaheuristics: Cambridge International Science Publishing

  79. Glover F, Kochenberger GA (eds) (2003) Handbook of metaheuristics. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  80. Gendreau M, Potvin J-Y (2010) Handbook of metaheuristics: Springer Science

  81. Westerberg AW, Hillenbrand JB (1988) The synthesis of multiple-effect evaporator systems using minimum utility insights-II. Liquid flowpattern selection. Comput Chem Eng 12(7):625–636. https://doi.org/10.1016/0098-1354(88)80004-8

    Article  CAS  Google Scholar 

  82. Hillenbrand JB, Westerberg AW (1988) The synthesis of multiple-effect evaporator systems using minimum utility insights-I. A cascaded heat representation. Comput Chem Eng 12(7):611–624. https://doi.org/10.1016/0098-1354(88)80003-6

    Article  CAS  Google Scholar 

  83. Simpson R, Almonacid S, López D, Abakarov A (2008) Optimum design and operating conditions of multiple effect evaporators: tomato paste. J Food Eng 89(4):488–497

    Article  Google Scholar 

  84. Khademi MH, Rahimpour MR, Jahanmiri A (2009) Simulation and optimization of a six-effect evaporator in a desalination process. Chem Eng Process 48(1):339–347. https://doi.org/10.1016/j.cep.2008.04.013

    Article  CAS  Google Scholar 

  85. Higa M, Freitas AJ, Bannwart AC, Zemp RJ (2009) Thermal integration of multiple effect evaporator in sugar plant. Appl Therm Eng 29(2–3):515–522. https://doi.org/10.1016/j.applthermaleng.2008.03.009

    Article  CAS  Google Scholar 

  86. Sebastian P, Quirante T, Tiat VHK, Ledoux Y (2010) Multi-objective optimization of the design of two-stage flash evaporators: Part 2. Multi-objective optimization. Int J Therm Sci 49(12):2459–2466. https://doi.org/10.1016/j.ijthermalsci.2010.07.002

    Article  Google Scholar 

  87. Quirante T, Ledoux Y, Sebastian P (2012) Multiobjective optimization including design robustness objectives for the embodiment design of a two-stage flash evaporator. Int J Interact Des Manuf (IJIDeM) 6(1):29–39. https://doi.org/10.1007/s12008-011-0134-8

    Article  Google Scholar 

  88. Sharma S, Rangaiah GP, Cheah KS (2011) Multi-objective optimization using MS Excel with an application to design of a falling-film evaporator system. Food Bioprod Process 90(2):123–134. https://doi.org/10.1016/j.fbp.2011.02.005

    Article  Google Scholar 

  89. Khanam S, Mohanty B (2010) Energy reduction schemes for multiple effect evaporator. Appl Energy 87(4):1102–1111. https://doi.org/10.1016/j.apenergy.2009.05.003

    Article  Google Scholar 

  90. Khanam S, Mohanty B (2011) Development of a new model for multiple effect evaporator system. Comput Chem Eng 35(10):1983–1993. https://doi.org/10.1016/j.compchemeng.2010.11.001

    Article  CAS  Google Scholar 

  91. Gautami G, Khanam S (2012) Selection of optimum configuration for multiple effect evaporator system. Desalination 288:16–23. https://doi.org/10.1016/j.desal.2011.12.005

    Article  CAS  Google Scholar 

  92. Diel CL, Canevesi RLS, Zempulski DA, Awadallak JA, Borba CE, Palú F et al (2016) Optimization of multiple-effect evaporation in the pulp and paper industry using response surface methodology. Appl Therm Eng 95:18–23. https://doi.org/10.1016/j.applthermaleng.2015.10.136

    Article  Google Scholar 

  93. Sharan P, Bandyopadhyay S (2016) Energy integration of multiple effect evaporators with background process and appropriate temperature selection. Ind Eng Chem Res 55(6):1630–1641. https://doi.org/10.1021/acs.iecr.5b03516

    Article  CAS  Google Scholar 

  94. Sharan P, Bandyopadhyay S (2017) Energy integration of multiple-effect evaporator, thermo-vapor compressor, and background process. J Clean Prod 164:1192–1204. https://doi.org/10.1016/j.jclepro.2017.07.041

    Article  Google Scholar 

  95. Jiang Y, Kang L, Liu Y (2018) Simultaneous synthesis of a multiple-effect evaporation system with background process. Chem Eng Res Des 133:79–89. https://doi.org/10.1016/j.cherd.2018.02.037

    Article  CAS  Google Scholar 

  96. Pati S, Verma OP (2022) Energy integration of solar assisted Multiple Stage Evaporator and optimum parameter selection. Energy 239:122162. https://doi.org/10.1016/j.energy.2021.122162

    Article  Google Scholar 

  97. Pati S, Kumar Sharma T, Kumar Goyal K, Prakash Verma O (2022) Renewable integration and energy reduction in multiple stage evaporator. Mater Today Proc. https://doi.org/10.1016/j.matpr.2022.09.568

    Article  Google Scholar 

  98. Pati S, Verma OP, Arya RK, Tiwari AK (2022) Transient modeling and simulation of a multiple-stage evaporator in the paper industry. Chem Eng Technol 45(3):456–466. https://doi.org/10.1002/ceat.202100387

    Article  CAS  Google Scholar 

  99. Verma OP, Manik G, Mohammed TH (2017) Energy management in multi stage evaporator through a steady and dynamic state analysis. Korean J Chem Eng 34(10):2570–2583. https://doi.org/10.1007/s11814-017-0180-4

    Article  CAS  Google Scholar 

  100. Verma OP, Mohammed TH, Mangal S, Manik G (2017) Minimization of energy consumption in multi-stage evaporator system of Kraft recovery process using Interior-Point Method. Energy 129:148–157. https://doi.org/10.1016/j.energy.2017.04.093

    Article  Google Scholar 

  101. Yadav D, Verma OP (2020) Energy optimization of multiple stage evaporator system using water cycle algorithm. Heliyon 6(7):e04349. https://doi.org/10.1016/j.heliyon.2020.e04349

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yadav D, Kumar S, Verma OP, Pachauri N, Sharma V (2021) Approximate solution of non-linear dynamic energy model for multiple effect evaporator using fourier series and metaheuristics. Korean J Chem Eng 38(5):906–923. https://doi.org/10.1007/s11814-021-0787-3

    Article  CAS  Google Scholar 

  103. Yadav D, Sharma TK, Sharma V, Verma OP (2021) Optimizing the energy efficiency of multiple effect evaporator house using metaheuristic approaches. Int J Syst Assur Eng Manag. https://doi.org/10.1007/s13198-021-01429-9

    Article  Google Scholar 

  104. Himmelblau DM, Bischoff KB (1968) Process analysis and simulation: deterministic systems: John Wiley and Sons Ltd

  105. Douglas JM (1972) Process dynamics and control: analysis of dynamic systems. Prentice-Hall Inc, Englewood Cliffs, New Jersey

    Google Scholar 

  106. Ramirez WF (1997) Computational methods for process simulation: Butterworth-Heinemann

  107. Ingham J, Dunn IJ, Heinzle E, Přenosil JE (2000) Chemical engineering dynamics: an introduction to modelling and computer simulation: Wiley-VCH Verlag

  108. Hangos KM, Cameron IT (2001) Process modelling and model analysis: Academic Press

  109. Stephanopoulos G (1984) Chemical process control. Prentice Hall, An introduction to theory and practice

    Google Scholar 

  110. Luyben W (1996) Process modeling, simulation and control for chemical engineers: McGraw-Hill

  111. Bequette BW (1998) Process Dynamics: modeling, analysis, and simulation: Prentice-Hall

  112. Seborg D, Edgar T, Mellichamp D (2004) Process dynamics and control: John Wiley & Sons, Inc

  113. Andre H, Ritter RA (1968) Dynamic response of a double effect evaporator. Can J Chem Eng 46(4):259–264. https://doi.org/10.1002/cjce.5450460409

    Article  CAS  Google Scholar 

  114. Newell RB, Fisher DG (1972) Model development, reduction, and experimental evaluation for an evaporator. Ind Eng Chem Process Des Dev 11(2):213–221. https://doi.org/10.1021/i260042a011

    Article  CAS  Google Scholar 

  115. Bolmstedt U (1977) Simulation of the steady-state and dynamic behaviour of multiple effect evaporation plants Part 2: dynamic behaviour. Comput Aided Des 9(1):29–40. https://doi.org/10.1016/0010-4485(77)90060-4

    Article  Google Scholar 

  116. Lima Hon VB, Chen CS, Marsaioli A (1977) Computer simulation of dynamic behavior in vacuum evaporation of tomato paste. Trans ASABE 22(1):215–218

    Article  Google Scholar 

  117. Tonelli SM, Romagnoli J, Porras J (1990) Computer package for transient analysis of industrial multiple-effect evaporators. J Food Eng 12(4):267–281. https://doi.org/10.1016/0260-8774(90)90002-P

    Article  Google Scholar 

  118. Runyon CH, Rumsey TR, McCarthy KL (1991) Dynamic simulation of a nonlinear model of a double effect evaporator. J Food Eng 14(3):185–201. https://doi.org/10.1016/0260-8774(91)90007-F

    Article  Google Scholar 

  119. Cadet C, Touré Y, Gilles G, Chabriat JP (1999) Knowledge modeling and nonlinear predictive control of evaporators in cane sugar production plants. J Food Eng 40(1–2):59–70. https://doi.org/10.1016/S0260-8774(99)00037-0

    Article  Google Scholar 

  120. Lissane Elhaq S, Giri F, Unbehauen H (1999) Modelling, identification and control of sugar evaporation - theoretical design and experimental evaluation. Control Eng Pract 7(8):931–942. https://doi.org/10.1016/S0967-0661(99)00043-X

    Article  Google Scholar 

  121. Miranda V, Simpson R (2005) Modelling and simulation of an industrial multiple effect evaporator: tomato concentrate. J Food Eng 66(2):203–210. https://doi.org/10.1016/j.jfoodeng.2004.03.007

    Article  Google Scholar 

  122. Kumar D, Kumar V, Singh VP (2013) Modeling and dynamic simulation of mixed feed multi-effect evaporators in paper industry. Appl Math Model 37(1–2):384–397. https://doi.org/10.1016/j.apm.2012.02.039

    Article  Google Scholar 

  123. Kalliadasis S, Ruyer-Quil C, Scheid B, Velarde MG (2012) Falling liquid films: Springer

  124. Peacock SD, Starzak M (1996) Modelling of climbing film evaporators. Proc South Afr Sugar Technol Assoc 70:213–220

    Google Scholar 

  125. Quaak P, Gerritsen JBM (1990) Modelling dynamic behaviour of multiple-effect falling-film evaporators. In: Bussemaker HT, Iedema PD (eds) Computer Applications in Chemical Engineering. Elsevier, Amsterdam, pp 59–64

    Google Scholar 

  126. Quaak P, van Wijck MPCM, van Haren JJ (1994) Comparison of process identification and physical modelling for falling-film evaporators. Food Control 5(2):73–82. https://doi.org/10.1016/0956-7135(94)90089-2

    Article  Google Scholar 

  127. van Wijck MPCM, Quaak P, van Haren JJ (1994) Multivariable supervisory control of a four-effect falling-film evaporator. Food Control 5(2):83–89. https://doi.org/10.1016/0956-7135(94)90090-6

    Article  Google Scholar 

  128. Winchester JA, Marsh C (1999) Dynamics and control of falling film evaporators with mechanical vapour recompression. Chem Eng Res Des 77(5):357–371. https://doi.org/10.1205/026387699526340

    Article  CAS  Google Scholar 

  129. Winchester J (2000) Model based analysis of the operation and control of falling film evaporators. Massey University, Palmerston North

    Google Scholar 

  130. Paramalingam S (2004) Modelling, optimisation and control of a falling-film evaporator. Massey University, Palmerston North

    Google Scholar 

  131. Stefanov Z, Hoo KA (2005) Control of a multiple-effect falling film evaporator plant. Ind Eng Chem Res 44(9):3146–3158. https://doi.org/10.1021/ie049397w

    Article  CAS  Google Scholar 

  132. Stefanov ZI, Hoo KA (2004) Distributed Parameter model of black liquor falling-film evaporators. 2. Modeling of a multiple-effect evaporator plant. Ind Eng Chem Res 43(25):8117–8132. https://doi.org/10.1021/ie049611g

    Article  CAS  Google Scholar 

  133. Medhat Bojnourd F, Fanaei MA, Zohreie H (2015) Mathematical modelling and dynamic simulation of multi-effect falling-film evaporator for milk powder production. Math Comput Model Dyn Syst 21(4):336–358. https://doi.org/10.1080/13873954.2014.980276

    Article  Google Scholar 

  134. Díaz-Ovalle CO, González-Alatorre G, Alvarado JFJ (2017) Analysis of the dynamic response of falling-film evaporators considering fouling. Food Bioprod Process 104:124–136. https://doi.org/10.1016/j.fbp.2017.05.007

    Article  CAS  Google Scholar 

  135. Gourdon M, Mura E (2017) Performance evaluation of falling film evaporators in the dairy industry. Food Bioprod Process 101:22–31. https://doi.org/10.1016/j.fbp.2016.10.004

    Article  Google Scholar 

  136. Schwaer C, Hofmann J, Mühlpfordt M, Frank A, Gröll L (2020) Modular simulation model for falling film evaporators with novel approach to manage dominant time-varying transport delays. Comput Chem Eng 132:106604. https://doi.org/10.1016/j.compchemeng.2019.106604

    Article  CAS  Google Scholar 

  137. Aström KJ, Hägglund T (2005) Advanced PID control: ISA

  138. Kalani G (2002) Industrial process control: advances and applications: Butterworth Heinemann

  139. Smith C (2010) Advanced process control: beyond single-loop control: John Wiley & Sons, Inc

  140. Lozano JE, Elustondo MP, Romagnoli JA (1984) Control studies in an industrial apple juice evaporator. J Food Sci 49(6):1422–1427. https://doi.org/10.1111/j.1365-2621.1984.tb12813.x

    Article  Google Scholar 

  141. Lee PL, Newell RB, Sullivan GR (1989) Generic model control — a case study. Can J Chem Eng 67(3):478–484. https://doi.org/10.1002/cjce.5450670320

    Article  CAS  Google Scholar 

  142. Wang FY, Cameron IT (1994) Control studies on a model evaporation process — constrained state driving with conventional and higher relative degree systems. J Process Control 4(2):59–75. https://doi.org/10.1016/0959-1524(94)80025-1

    Article  CAS  Google Scholar 

  143. To LC, Tadé MO, Kraetzl M, Le Page GP (1995) Nonlinear control of a simulated industrial evaporation process. J Process Control 5(3):173–182. https://doi.org/10.1016/0959-1524(94)00001-S

    Article  CAS  Google Scholar 

  144. To LC, Tadé MO, Le Page GP (1998) Implementation of a differential geometric nonlinear controller on an industrial evaporator system. Control Eng Pract 6(11):1309–1319. https://doi.org/10.1016/S0967-0661(98)00099-9

    Article  Google Scholar 

  145. Kam KM, Tadé MO (1999) Nonlinear control of a simulated industrial evaporation system using a feedback linearization technique with a state observer. Ind Eng Chem Res 38(8):2995–3006. https://doi.org/10.1021/ie980798j

    Article  CAS  Google Scholar 

  146. Kam KM, Tadé MO (2000) Simulated nonlinear control studies of five-effect evaporator models. Comput Chem Eng 23(11–12):1795–1810. https://doi.org/10.1016/S0098-1354(00)00291-X

    Article  CAS  Google Scholar 

  147. Atuonwu JC, Cao Y, Rangaiah GP, Tadé MO (2010) Identification and predictive control of a multistage evaporator. Control Eng Pract 18(12):1418–1428. https://doi.org/10.1016/j.conengprac.2010.08.002

    Article  Google Scholar 

  148. Benne M, Grondin- Perez B, Chabriat JP, Hervé P (2000) Artificial neural networks for modelling and predictive control of an industrial evaporation process. J Food Eng 46(4):227–234. https://doi.org/10.1016/S0260-8774(00)00055-8

    Article  Google Scholar 

  149. Rangaiah GP, Saha P, Tadé MO (2002) Nonlinear model predictive control of an industrial four-stage evaporator system via simulation. Chem Eng J 87(3):285–299. https://doi.org/10.1016/S1385-8947(01)00240-6

    Article  CAS  Google Scholar 

  150. Costa AOS, Lima EL (2003) Modelling and control of an industrial multiple-effect evaporator system. Can J Chem Eng 81(5):1032–1040. https://doi.org/10.1002/cjce.5450810514

    Article  CAS  Google Scholar 

  151. Yadav P, Jana AK (2010) Simulation and control of a commercial double effect evaporator: tomato juice. Chem Prod Process Model 5(1):Art. 6.1–Art. 6.20. https://doi.org/10.2202/1934-2659.1443

    Article  Google Scholar 

  152. Verma OP, Manik G, Jain VK (2018) Simulation and control of a complex nonlinear dynamic behavior of multi-stage evaporator using PID and Fuzzy-PID controllers. J Comput Sci 25:238–251. https://doi.org/10.1016/j.jocs.2017.04.001

    Article  Google Scholar 

  153. Verma OP, Mohammed TH, Mangal S, Manik G (2018) Modeling, simulation and control of the dynamics of a Heptads’ effect evaporator system used in the Kraft recovery processes. Trans Inst Meas Control 40(7):2278–2290. https://doi.org/10.1177/0142331217700239

    Article  Google Scholar 

  154. Verma OP, Suryakant, Manik G (2016) Solution of SNLAE model of backward feed multiple effect evaporator system using genetic algorithm approach. Int J System Assur Eng Manag 8(1):63–78. https://doi.org/10.1007/s13198-016-0533-0

    Article  Google Scholar 

  155. Sousa FMM, Fonseca RR (2018) Application of adaptive feedforward-feedback control on multiple effect evaporator process. Chem Prod Process Model 14(2):20180040. https://doi.org/10.1515/cppm-2018-0040

    Article  Google Scholar 

  156. Soares RM, Câmara MM, Feital T, Pinto JC (2019) Digital twin for monitoring of industrial multi-effect evaporation. Processes 7(8):537

    Article  CAS  Google Scholar 

  157. Emori EY, Ravagnani MASS, Costa CBB (2022) Application of a predictive Q-learning algorithm on the multiple-effect evaporator in a sugarcane ethanol biorefinery. Digit Chem Eng 5:100049. https://doi.org/10.1016/j.dche.2022.100049

    Article  Google Scholar 

  158. Emori EY, Ravagnani MASS, Costa CBB (2022) Application of fuzzy control in the evaporation stage of a first- and second-generation sugarcane ethanol biorefinery. Chem Eng Commun 1–18. https://doi.org/10.1080/00986445.2022.2084393

  159. O’Callaghan DJ, Cunningham P (2005) Modern process control techniques in the production of dried milk products- a review. Lait 85:335–342. https://doi.org/10.1051/lait:2005021

    Article  Google Scholar 

  160. Russell NT, Bakker HHC (1997) Modular modelling of an evaporator for long-range prediction. Artif Intell Eng 11(4):347–355. https://doi.org/10.1016/S0954-1810(96)00053-2

    Article  Google Scholar 

  161. Russell NT, Bakker HHC, Chaplin RI (2000) A comparison of dynamic models for an evaporation process. Trans IChemE Chem Eng Res Des 78(A8):1120–1128. https://doi.org/10.1205/026387600528274

    Article  CAS  Google Scholar 

  162. Russell NT, Bakker HHC, Chaplin RI (2000) Modular neural network modelling for long-range prediction of an evaporator. Control Eng Pract 8(1):49–59. https://doi.org/10.1016/S0967-0661(99)00123-9

    Article  Google Scholar 

  163. Bakker HHC, Marsh C, Paramalingam S, Chen H (2006) Cascade controller design for concentration control in a falling-film evaporator. Food Control 17(5):325–330. https://doi.org/10.1016/j.foodcont.2004.11.007

    Article  Google Scholar 

  164. Lahtinen ST (2001) Identification of fuzzy controller for use with a falling-film evaporator. Food Control 12(3):175–180. https://doi.org/10.1016/S0956-7135(01)00004-4

    Article  Google Scholar 

  165. Karimi M, Jahanmiri A (2006) Nonlinear modeling and cascade control design for multi effect falling film evaporators. Iran J Chem Eng 3(2):52–63

    Google Scholar 

  166. Karimi M, Jahanmiri A, Azarmi M (2007) Inferential cascade control of multi-effect falling-film evaporator. Food Control 18(9):1036–1042. https://doi.org/10.1016/j.foodcont.2006.06.009

    Article  CAS  Google Scholar 

  167. Haasbroek A (2013) Advanced control with semi-empirical and data based modelling for falling film evaporators. Stellenbosch University, Stellenbosch, RSA

    Google Scholar 

  168. Haasbroek A, Auret L, Steyn WH (2013) A comparison of control techniques for dairy falling film evaporators. IFAC Proceedings Volumes 46(32):253–258. https://doi.org/10.3182/20131218-3-IN-2045.00132

    Article  Google Scholar 

  169. Wang X, Li C, Chen X (2016) Disturbance rejection control for multiple-effect falling-film evaporator based on disturbance observer. Trans Inst Meas Control 38(6):773–783. https://doi.org/10.1177/0142331215597296

    Article  Google Scholar 

  170. Díaz-Ovalle CO, Rico-Ramírez V, Ramos-Ojeda E (2022) Control of falling-film evaporators with modeling of fouling. Food Bioprod Process 132:68–82. https://doi.org/10.1016/j.fbp.2021.12.010

    Article  Google Scholar 

  171. Anandharamakrishnan C (2013) Computational fluid dynamics applications in food processing: Springer

  172. Anderson JD (1995) Computational fluid dynamics: the basics with applications: McGraw-Hill

  173. Aref H, Balachandar S (2018) A first course in computational fluid dynamics: Cambridge University Press

  174. Blazek J (2006) Computational fluid dynamics: principles and applications. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  175. Date AW (2005) Introduction to computational fluid dynamics: Cambridge University Press

  176. Hirsch C (2007) Numerical computation of internal and external flows: the fundamentals of CFD: Butterworth-Heinemann

  177. Tu J, Yeoh G-H, Liu C (2013) Computational fluid dynamics: a practical approach, 2nd edn. Butterworth-Heinemann, Elsevier, Oxford, UK

    Google Scholar 

  178. Chung TJ (2010) Computational fluid dynamics, 2nd edn. Cambridge University Press, New York, USA

    Book  Google Scholar 

  179. Garg VK (1998) Applied computational fluid dynamics: CRC Press

  180. Jayanti S (2018) Computational fluid dynamics for engineers and scientists: Springer Verlag

  181. Rodriguez S (2019) Applied computational fluid dynamics and turbulence modeling: Springer-Verlag

  182. Runchal A (2020) 50 years of CFD in engineering sciences: Springer Verlag

  183. Thévenin D, Janig G (2008) Optimization and computational fluid dynamics: Springer-Verlag

  184. Wendt JF (2009) Computational fluid dynamics: Springer-Verlag

  185. Wilcox DC (2006) Turbulence modeling for CFD: DCW Industries Inc

  186. Yeoh G-H, Tu J (2010) Computational techniques for multi-phase flows: Butterworth-Heinemann

  187. Yeoh G-H, Yuen K-K (2010) Computational fluid dynamics in fire engineering: Butterworth-Heinemann

  188. Shyy W, Udaykumar HS, Madhukar MR, Smith RW (1996) Computational fluid dynamics with moving boundaries: Dover Publications

  189. Karmakar A, Acharya S (2020) A review of computational models for falling liquid films. In: Runchal A (ed) 50 years of CFD in engineering science. Springer Verlag, pp 551–606

    Chapter  Google Scholar 

  190. Woo MW (2016) Computational fluid dynamics of spray dryers: an engineer’s guide: CRC Press

  191. Luo L-C, Zhang G-M, Pan J-H, Tian M-C (2013) Flow and heat transfer characteristics of falling water film on horizontal circular and non-circular cylinders. J Hydrodynam Ser B 25(3):404–414. https://doi.org/10.1016/S1001-6058(11)60379-0

    Article  Google Scholar 

  192. Wang Q, Li M, Xu W, Yao L, Liu X, Su D et al (2020) Review on liquid film flow and heat transfer characteristics outside horizontal tube falling film evaporator: Cfd numerical simulation. Int J Heat Mass Transf 163:120440. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120440

    Article  CAS  Google Scholar 

  193. Xuening F, Lei C, Yuman D, Min J, Jinping F (2015) CFD modeling and analysis of brine spray evaporation system integrated with solar collector. Desalination 366:139–145. https://doi.org/10.1016/j.desal.2015.02.027

    Article  CAS  Google Scholar 

  194. Chen J, Zhang R, Niu R (2015) Numerical simulation of horizontal tube bundle falling film flow pattern transformation. Renew Energy 73:62–68. https://doi.org/10.1016/j.renene.2014.08.007

    Article  Google Scholar 

  195. Fernández-Seara J, Pardiñas ÁÁ (2014) Refrigerant falling film evaporation review: description, fluid dynamics and heat transfer. Appl Therm Eng 64(1):155–171. https://doi.org/10.1016/j.applthermaleng.2013.11.023

    Article  CAS  Google Scholar 

  196. Sun D, Xu J, Chen Q (2014) Modeling of the evaporation and condensation phase-change problems with FLUENT. Numer Heat Transf Part B Fundam 66(4):326–342. https://doi.org/10.1080/10407790.2014.915681

    Article  Google Scholar 

  197. Argo BD, Putranto AW, Lestari A, Ramadhan F, Oktavian R, Wihandika RC (2020) Multi effect evaporator design calculation for brown sugar production using computational fluid dynamics. Int J Innov Technol Exploring Eng 9(4):87–90

    Google Scholar 

  198. Gourdon M, Innings F, Jongsma A, Vamling L (2015) Qualitative investigation of the flow behaviour during falling film evaporation of a dairy product. Exp Thermal Fluid Sci 60:9–19. https://doi.org/10.1016/j.expthermflusci.2014.07.017

    Article  Google Scholar 

  199. Morison KR (2015) Reduction of fouling in falling-film evaporators by design. Food Bioprod Process 93:211–216. https://doi.org/10.1016/j.fbp.2014.10.009

    Article  CAS  Google Scholar 

  200. Morison KR, Sellier M (2012) The optimal profile of weirs for minimum static holdup. Int J Multiph Flow 39:245–248. https://doi.org/10.1016/j.ijmultiphaseflow.2011.10.004

    Article  CAS  Google Scholar 

  201. Bushnell NPK (2008) The study of liquid/vapour interaction inside a falling film evaporator in the dairy industry. Unpublished PhD thesis, University of Canterbury, Christchurch, New Zealand

  202. Frías-Esquivel J, González-Alatorre G, Díaz-Ovalle CO, Lesso-Arroyo R, Ramos-Ojeda E (2017) Hydrodynamic analysis of the falling-film formation in evaporators using CFD simulation. Food Bioprod Process 101:56–67. https://doi.org/10.1016/j.fbp.2016.10.006

    Article  Google Scholar 

  203. Rahaei N, Jafari Nasr MR (2019) Improving heat transfer in falling film evaporators in food industries. Iran J Chem Eng 38(4):237–250

    CAS  Google Scholar 

  204. Hui YH (2007) Handbook of food products manufacturing. Health, Meat, Milk, Poultry, Seafood, and Vegetables.: John Wiley & Sons, Inc

  205. Madrid-Vicente A (2010) Nuevo manual de industrias alimentarias (Handbook of Food Industries): AMV Ediciones

  206. Brennan JG, Grandison AS (2012) Food processing handbook: Wiley and Sons

  207. Berk Z (2013) Food process engineering and technology: Academic Press

  208. Varzakas T, Tzia C (2016) Handbook of food processing: food safety, quality, and manufacturing processes: CRC Press

  209. Toledo RT (2007) Fundamentals of food process engineering: Springer

  210. Urbaniec K (2004) The evolution of evaporator stations in the beet-sugar industry. J Food Eng 61(4):505–508. https://doi.org/10.1016/S0260-8774(03)00218-8

    Article  Google Scholar 

  211. Rajaeifar MA, Sadeghzadeh Hemayati S, Tabatabaei M, Aghbashlo M, Mahmoudi SB (2019) A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply. Renew Sustain Energy Rev 103:423–442. https://doi.org/10.1016/j.rser.2018.12.056

    Article  Google Scholar 

  212. Adnan A, Mushtaq M, ul Islam T (2018) Chapter 12 - Fruit Juice concentrates. In: Rajauria G, Tiwari BK (eds) Fruit Juices. Academic Press, San Diego, pp 217–240

    Chapter  Google Scholar 

  213. Ramteke RS, Eipeson WE, Patwardhan MV (1990) Behaviour of aroma volatiles during the evaporative concentration of some tropical fruit juices and pulps. J Sci Food Agric 50(3):399–405. https://doi.org/10.1002/jsfa.2740500312

    Article  CAS  Google Scholar 

  214. Pisecký J (1995) Evaporation and spray drying in the dairy industry. In A. S. Mujumdar (Ed.), Handbook of Industrial Drying: CRC Press

  215. Bylund G (1995) Dairy processing handbook: Tetra Pak AB

  216. Tamime AY (2009) Dairy powders and concentrated products: Wiley-Blackwell

  217. Schuck P, Jeantet R, Tanguy G, Méjean S, Gac A, Lefebvre T et al (2015) Energy consumption in the processing of dairy and feed powders by evaporation and drying. Drying Technol 33(2):176–184. https://doi.org/10.1080/07373937.2014.942913

    Article  CAS  Google Scholar 

  218. Westergaard V (1994) Milk powder technology: evaporation and spray drying. Conpenhague: Niro A/S

  219. Pearce RJ (1992) Whey processing. In J. G. Zadow (Ed.), Whey and lactose processing. Dordrecht, The Netherlands: Springer Verlag

  220. Koh E, Charoenprasert S, Mitchell AE (2012) Effects of industrial tomato paste processing on ascorbic acid, flavonoids and carotenoids and their stability over one-year storage. J Sci Food Agric 92(1):23–28. https://doi.org/10.1002/jsfa.4580

    Article  CAS  PubMed  Google Scholar 

  221. Hayes WA, Smith PG, Morris AEJ (1998) The production and quality of tomato concentrates. Crit Rev Food Sci Nutr 38(7):537–564. https://doi.org/10.1080/10408699891274309

    Article  Google Scholar 

  222. Clarke RJ (1987) Extraction. In: Clarke RJ, Macrae R (eds) Coffee, vol 2. Technology. Springer, Netherlands, Dordrecht, pp 109–145

    Chapter  Google Scholar 

  223. Dijkstra AJ (2013) Vacuum Stripping Edible oil processing from a patent perspective (pp. 205–218). Boston, MA: Springer US

  224. Piornos JA, Koussissi E, Balagiannis DP, Brouwer E, Parker JK (2023) Alcohol-free and low-alcohol beers: aroma chemistry and sensory characteristics. Compr Rev Food Sci Food Saf 22(1):233–259. https://doi.org/10.1111/1541-4337.13068

    Article  CAS  PubMed  Google Scholar 

  225. Brányik T, Silva DP, Baszczyňski M, Lehnert R, e Silva JB (2012) A review of methods of low alcohol and alcohol-free beer production. J Food Eng 108(4):493–506. https://doi.org/10.1016/j.jfoodeng.2011.09.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

First author, Christian Díaz-Ovalle, appreciates the financial support by CONAHCYT México. Last author acknowledges the Chinese Ministry of Science and Technology "the Belt and Road" Innovative Talent Exchange Foreign Expert Project (Grant Number DL2021003001 and DL2021014003L).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian O. Díaz-Ovalle or Seid Mahdi Jafari.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Ovalle, C.O., Jafari, S.M. Multiple-Effect Evaporators in the Food Industry: Fundamentals, Design, Simulation, Control, and Applications. Food Eng Rev 15, 691–717 (2023). https://doi.org/10.1007/s12393-023-09350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-023-09350-6

Keywords

Navigation