Skip to main content

Advertisement

Log in

Multiuser Detection For DS-CDMA Systems Using Honeybees Mating Optimization Algorithm

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The future wireless mobile communication systems will be required to support high-speed transmission rate and high quality of service. Direct sequence code division multiple access (DS-CDMA) is an important scheme for high-rate wireless communication. The capacity of DS-CDMA can be impaired by two problems; near-far effect and multiple-access interference (MAI). The use of conventional-matched filter detector for multiple users in DS-CDMA fails to combat any of these problems. The performance degradation caused by MAI can be overcome using multiuser detection (MUD). The use of maximum likelihood (ML) sequence estimation detector provides excellent results, but involves high computational complexity. In this paper, we propose a new meta-heuristic approach for MUD using honeybees mating optimization (HBMO) algorithm to detect the user bits based on the ML decision rule for DS-CDMA systems in additive white-Gaussian noise and flat Rayleigh fading channels. In order to improve the solutions generated by the HBMO, a second meta-heuristic method simulated annealing is used. By computer simulations, the bit error rate performance and the complexity curves show that the proposed HBMO-SA MUD is capable of outperforming the other conventional detectors and genetic algorithm detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ipatov, V.P.: “Spread Spectrum and CDMA: Principles and Applications”. Wiley Ltd. (2005)

  2. Verdu S.: “Multiuser Detection”. Cambridge Univ. Press, Cambridge (1998)

    Google Scholar 

  3. Verdu S.: “Minimum probability of error for asynchronous Gaussian multiple access channels”. IEEE Trans. Inf. Theory 32(1), 85–96 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Duel-Hallen A. et al.: “Multiuser detection for CDMA systems”. IEEE Pers. Commun. 2, 46–58 (1985)

    Article  Google Scholar 

  5. Moshavi S.: “Multiuser detection for DS-CDMA communications”. IEEE Commun. Mag. 34, 124–136 (1986)

    Article  Google Scholar 

  6. Attia A.F. et al.: “Genetic Algorithm-based fuzzy controller for improving the dynamic performance of self-excited induction generator”. Arabian J. Sci. Eng. 37(3), 665–682 (2012)

    Article  Google Scholar 

  7. Maghsoudi M.J. et al.: “Data Clustering for the DNA computing readout method implemented on lightcycler and based on particle swarm optimization”. Arabian J. Sci. Eng. 37(3), 697–707 (2012)

    Article  MathSciNet  Google Scholar 

  8. Seyed S. et al.: “Estimating Penman–Monteith reference evapotranspiration using artificial neural networks and genetic algorithm: a case study”. Arabian J. Sci. Eng. 37(4), 935–944 (2012)

    Article  Google Scholar 

  9. Khorasani J.: “A new heuristic approach for unit commitment problem using particle swarm optimization”. Arabian J. Sci. Eng. 37(4), 1033–1042 (2012)

    Article  MathSciNet  Google Scholar 

  10. Ergun C., Hacioglu K.: “Multiuser detection using a genetic-algorithm in CDMA communication systems”. IEEE Trans. Commun. 48, 1374–1383 (2000)

    Article  Google Scholar 

  11. Yen, K.; Hanzo, L.: “Hybrid genetic algorithm based multiuser detection schemes for synchronous CDMA systems”. In: Proceedings of 51th IEEE vehicular technology conference, pp. 1400–1404. Tokyo, Japan (2000)

  12. Yen K., Hanzo L.: “Genetic algorithm assisted joint multiuser symbol detection and fading channel estimation for synchronous CDMA systems”. IEEE J. Sel. Areas Commun. 19, 985–997 (2001)

    Article  Google Scholar 

  13. Yen K., Hanzo L.: “Genetic-algorithm-assisted multiuser detection in asynchronous CDMA communications”. IEEE Trans. Veh. Technol. 53, 1413–1422 (2004)

    Article  Google Scholar 

  14. Wu X. et al.: “Adaptive robust detection for CDMA using genetic algorithm”. IEE Proc. Commun. 150, 437–444 (2003)

    Article  Google Scholar 

  15. San José-Revuelta L.M.: “Entropy-guided micro-genetic algorithm for multiuser detection in CDMA communications”. Signal Process. 85, 1572–1587 (2005)

    Article  MATH  Google Scholar 

  16. Lim H.S. et al.: “Multiuser detection for DS-CDMA systems using evolutionary programming”. IEEE Commun. Lett. 7, 101–103 (2003)

    Article  Google Scholar 

  17. Abrao, T.; et al.: “Evolutionary programming with cloning and adaptive cost function applied to multi-user DS-CDMA systems”. In: IEEE international symposium on spread spectrum techniques and applications, pp. 160–164. Sydney, Australia (2004)

  18. Tan, P.H.; Rasmussen, L.K.: “A reactive tabu search heuristic for multiuser detection in CDMA”. In: IEEE international symposium on information theory, p.472. Lausanne, Switzerland (2002)

  19. El Morra H.H. et al.: “Optimum multiuser detection in CDMA using particle swarm algorithm”. Arabian J. Sci. Eng. 34(1B), 197–202 (2009)

    Google Scholar 

  20. Haddad O.B. et al.: “Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization”. Water Resour. Manag. 20, 661–680 (2006)

    Article  Google Scholar 

  21. Abbass, H.A.: “Marriage in honeybees optimization (MBO): a haplometrosis polygynous swarming approach”. In: The congress on evolutionary computation, pp. 207–214. Seoul, Korea (2001)

  22. Shayeghi, H.; et al.: “LFC design using HBMO technique in interconnected power system”. Int. J. Tech. Phys. Probl. Eng. 2)(5), no. 4, 41–48 (2010)

  23. Niknam T.: “Application of honey-bee mating optimization on state estimation of power distribution system including distributed generators”. J. Zhejiang Univ. Sci. A 9, 1753–1764 (2008)

    Article  MATH  Google Scholar 

  24. Bozorg Haddad O. et al.: “Honey-bee mating optimization (HBMO) algorithm in deriving optimal operation rules for reservoirs”. J. Hydroinform. 10(3), 257–264 (2008)

    Article  Google Scholar 

  25. Nasser Sabar, R.; et al., “Solving examination timetabling problems”. In: Multidisciplinary international conference on scheduling: theory and applications, pp. 10–12. Dublin, Ireland (2009)

  26. Kirkpatrick S. et al.: “Optimization by simulated annealing. Science”. New Series, 220(4598), 671–680 (1983)

    MATH  MathSciNet  Google Scholar 

  27. Suman B., Kumar P.: “A survey of simulated annealing as a tool for single and multiobjective optimization”. J. Op. Res. Soc. 57, 1143–1160 (2006)

    Article  MATH  Google Scholar 

  28. Debbat, F.; Bendimerad, F.T.: “Simulated annealing method coupled with tabu search method for adaptive array antennas optimization problems”. Annales des Télécommunications (2006)

  29. Menon, S.; Gupta, R.: “Assigning cells to switches in cellular networks by incorporating a pricing mechanism into simulated annealing”. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(1), (2004)

  30. Bandyopadhyay, S.; et al.: “A Simulated annealing-based multiobjective optimization algorithm: AMOSA”. IEEE Trans. Evolut. Comput. 12(3) (2008)

  31. Haddad, O.B.; et al.: “HBMO in engineering optimization”. In: Ninth international water technology conference, pp. 1053–1063. Sharm El-Sheikh, Egypt (2005)

  32. Afshar A.: “Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation”. J. Frankl. Inst. 344(5), 452–462 (2007)

    Article  MATH  Google Scholar 

  33. Marinakis Y., Marinaki, M.: “A honey bees mating optimization algorithm for the open vehicle routing problem”. In: Proceedings of the genetic and evolutionary computation conference, pp. 101–108 (2011)

  34. Marinakis Y. et al.: “Honey bees mating optimization algorithm for the Euclidean traveling salesman problem”. J. Inf. Sci. 181, 4684–4698 (2011)

    Article  MathSciNet  Google Scholar 

  35. Marinakis Y. et al.: “Honey bees mating optimization algorithm for large scale vehicle routing problems”. Nat. Comput. 9, 5–27 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Georgescu S.C., Popa R.: “Application of honey-bees mating optimization algorithm to pumping station scheduling for water supply”. U.P.B. Sci. Bull. Ser. D 72(1), 77–84 (2010)

    Google Scholar 

  37. Marinakis, Y.; Marinaki, M.: “A hybrid honey bees mating optimization algorithm for the probabilistic traveling salesman problem”. In: IEEE congress on evolutionary computation. Trondheim, Norway (2009)

  38. Yahyaoui, K.; et al.: “Hybrid algorithm based on HBMO and GRASP for real-Time task scheduling problem resolution”. Int. J. Comput. Sci. Issues 9(4), no. 3, 197–203 (2012)

  39. Mirzazadeh M. et al.: “A Honey bee algorithm to solve quadratic assignment problem”. J. Optim. Ind. Eng. 9, 27–36 (2011)

    Google Scholar 

  40. Ciriaco F. et al.: “DS/CDMA multiuser detection with evolutionary algorithms”. J. Univers. Comput. Sci. 12(4), 450–480 (2006)

    Google Scholar 

  41. Juntti, M.J.; et al.: “Genetic algorithms for multiuser detection in synchronous CDMA”. In: Proceedings of the IEEE international symposium on information theory, p. 492 (1997)

  42. Falkenauer E.: “Genetic Algorithms and Grouping Problems”. Wiley, New York (1998)

    Google Scholar 

  43. Larbi, N.; et al.: “Comparative study of CDMA and OFDM in WI-FI”. Int. J. Comput. Sci. Issues 9(2), no. 2, 427–433 (2012)

  44. Larbi, N.; et al.: “MC-CDMA Scheme in Wi-Fi Environment”. Int. J. Comput. Sci. Issues 9(1), no. 2, 243–247 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Larbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larbi, N., Debbat, F. & Boudghene Stambouli, A. Multiuser Detection For DS-CDMA Systems Using Honeybees Mating Optimization Algorithm. Arab J Sci Eng 39, 4911–4921 (2014). https://doi.org/10.1007/s13369-014-1198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1198-0

Keywords

Navigation