Skip to main content
Log in

Honey Bees Mating Optimization algorithm for large scale vehicle routing problems

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Honey Bees Mating Optimization algorithm is a relatively new nature inspired algorithm. In this paper, this nature inspired algorithm is used in a hybrid scheme with other metaheuristic algorithms for successfully solving the Vehicle Routing Problem. More precisely, the proposed algorithm for the solution of the Vehicle Routing Problem, the Honey Bees Mating Optimization (HBMOVRP), combines a Honey Bees Mating Optimization (HBMO) algorithm with the Multiple Phase Neighborhood Search–Greedy Randomized Adaptive Search Procedure (MPNS–GRASP) and the Expanding Neighborhood Search (ENS) algorithm. Besides these two procedures, the proposed algorithm has, also, two additional main innovative features compared to other Honey Bees Mating Optimization algorithms concerning the crossover operator and the workers. Two sets of benchmark instances are used in order to test the proposed algorithm. The results obtained for both sets are very satisfactory. More specifically, in the fourteen classic instances proposed by Christofides, the average quality is 0.029% and in the second set with the twenty large scale vehicle routing problems the average quality is 0.40%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbass HA (2001a) A monogenous MBO approach to satisfiability. In: Proceeding of the international conference on computational intelligence for modelling, control and automation, CIMCA’2001, Las Vegas, NV, USA

  • Abbass HA (2001b) Marriage in honey-bee optimization (MBO): a haplometrosis polygynous swarming approach. In: The congress on evolutionary computation (CEC2001), Seoul, Korea, May 2001, pp 207–214

  • Afshar A, Bozog Haddad O, Marino MA, Adams BJ (2007) Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J Frankl Inst 344:452–462

    Article  Google Scholar 

  • Baker BM, Ayechew MA (2003) A genetic algorithm for the vehicle routing problem. Comput Oper Res 30(5):787–800

    Article  MATH  MathSciNet  Google Scholar 

  • Baykasoglu A, Ozbakor L, Tapkan P (2007) Artificial bee colony algorithm and its application to generalized assignment problem. In: Chan FTS, Tiwari MK (eds) Swarm intelligence, focus on ant and particle swarm optimization. I-Tech Education and Publishing, Vienna, pp 113–144

  • Berger J, Barkaoui M (2003) A hybrid genetic algorithm for the capacitated vehicle routing problem. In: Proceedings of the genetic and evolutionary computation conference, Chicago, pp 646–656

  • Bodin L, Golden B, Assad A, Ball M (1983) The state of the art in the routing and scheduling of vehicles and crews. Comput Oper Res 10:63–212

    Article  MathSciNet  Google Scholar 

  • Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. In: Christofides N, Mingozzi A, Toth P, Sandi C (eds) Combinatorial optimization. Wiley, Chichester

    Google Scholar 

  • Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manag Sci 6(1):80–91

    Article  MATH  MathSciNet  Google Scholar 

  • Dorigo M, Stutzle T (2004) Ant colony optimization. A Bradford book. The MIT Press, Cambridge

    Google Scholar 

  • Drias H, Sadeg S, Yahi S (2005) Cooperative bees swarm for solving the maximum weighted satisfiability problem. In: IWAAN international work conference on artificial and natural neural networks, LNCS, vol 3512, pp 318–325

  • Fathian M, Amiri B, Maroosi A (2007) Application of honey bee mating optimization algorithm on clustering. Appl Math Comput. doi:10.1016/j.amc.2007.02.029

  • Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedure. J Glob Optim 6:109–133

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher ML (1995) Vehicle routing. In: Ball MO, Magnanti TL, Momma CL, Nemhauser GL (eds) Network routing, handbooks in operations research and management science, vol 8. North Holland, Amsterdam, pp 1–33

  • Garfinkel R, Nemhauser G (1972) Integer programming. Wiley, New York

  • Gendreau M, Hertz A, Laporte G (1994) A tabu search heuristic for the vehicle routing problem. Manag Sci 40:1276–1290

    Article  MATH  Google Scholar 

  • Gendreau M, Laporte G, Potvin J-Y (1997) Vehicle routing: modern heuristics. In: Aarts EHL, Lenstra JK (eds) Local search in combinatorial optimization. Wiley, Chichester, pp 311–336

    Google Scholar 

  • Gendreau M, Laporte G, Potvin J-Y (2002) Metaheuristics for the capacitated VRP. In: Toth P, Vigo D (eds) The vehicle routing problem, monographs on discrete mathematics and applications. Siam, Philadelphia, pp 129–154

  • Golden BL, Assad AA (1988) Vehicle routing: methods and studies. North Holland, Amsterdam

  • Golden BL, Wasil EA, Kelly JP, Chao IM (1998) The impact of metaheuristics on solving the vehicle routing problem: algorithms, problem sets, and computational results. In: Crainic TG, Laporte G (eds) Fleet management and logistics. Kluwer, Boston, pp 33–56

    Google Scholar 

  • Haddad OB, Afshar A, Marino MA (2006) Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour Manag 20:661–680

    Article  Google Scholar 

  • Hansen P, Mladenovic N (2001) Variable neighborhood search: principles and applications. Eur J Oper Res 130:449-467

    Article  MATH  MathSciNet  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim. doi:10.1007/s10898-007-9149-x

  • Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of 1995 IEEE international conference on neural networks, vol 4, pp 1942–1948

  • Laporte G, Gendreau M, Potvin J-Y, Semet F (2000) Classical and modern heuristics for the vehicle routing problem. Int Trans Oper Res 7:285–300

    Article  MathSciNet  Google Scholar 

  • Li F, Golden B, Wasil E (2005) Very large-scale vehicle routing: new test problems, algorithms and results. Comput Oper Res 32(5):1165–1179

    MATH  Google Scholar 

  • Lin S (1965) Computer solutions of the traveling salesman problem. Bell Syst Tech J 44:2245–2269

    MATH  Google Scholar 

  • Marinakis Y, Migdalas A (2002) Heuristic solutions of vehicle routing problems in supply chain management. In: Pardalos PM, Migdalas A, Burkard R (eds) Combinatorial and global optimization. World Scientific, Singapore, pp 205–236

  • Marinakis Y, Migdalas A, Pardalos PM (2005) Expanding neighborhood GRASP for the traveling salesman problem. Comput Optim Appl 32:231–257

    Article  MATH  MathSciNet  Google Scholar 

  • Marinakis Y, Migdalas A, Pardalos PM (2007a) A new bilevel formulation for the vehicle routing problem and a solution method using a genetic algorithm. J Glob Optim 38:555–580

    Article  MATH  MathSciNet  Google Scholar 

  • Marinakis Y, Migdalas A, Pardalos PM (2007b) Multiple phase neighborhood search GRASP based on Lagrangean relaxation and random backtracking Lin Kernighan for the traveling salesman problem. J Comb Optim. doi:10.1007/s10878-007-9104-2

  • Marinakis Y, Migdalas A, Pardalos PM (2007c) Expanding neighborhood search—GRASP for the probabilistic traveling salesman problem. Optim Lett. doi:10.1007/s11590-007-0064-3

  • Marinakis Y, Marinaki M, Dounias G (2007d) A hybrid particle swarm optimization algorithm for the vehicle routing problem (submitted)

  • Mester D, Braysy O (2007) Active-guided evolution strategies for large-scale capacitated vehicle routing problems. Comput Oper Res 34(10):2964–2975

    Article  MATH  Google Scholar 

  • Osman IH (1993) Metastrategy simulated annealing and tabu search algorithms for combinatorial optimization problems. Ann Oper Res 41:421–451

    Article  MATH  Google Scholar 

  • Pham DT, Kog E, Ghanbarzadeh A, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimization problems. In: IPROMS 2006 proceeding 2nd international virtual conference on intelligent production machines and systems. Elsevier, Oxford

  • Prins C (2004) A simple and effective evolutionary algorithm for the vehicle routing problem. Comput Oper Res 31:1985–2002

    Article  MATH  MathSciNet  Google Scholar 

  • Reimann M, Stummer M, Doerner K (2002) A savings based ant system for the vehicle routing problem. In: Proceedings of the genetic and evolutionary computation conference, New York, pp 1317–1326

  • Reimann M, Doerner K, Hartl RF (2004) D-ants: savings based ants divide and conquer the vehicle routing problem. Comput Oper Res 31(4):563–591

    Article  MATH  Google Scholar 

  • Resende MGC, Ribeiro CC (2003) Greedy randomized adaptive search procedures. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. Kluwer, Boston, pp 219–249

    Google Scholar 

  • Rochat Y, Taillard ED (1995) Probabilistic diversification and intensification in local search for vehicle routing. J Heuristics 1:147–167

    Article  MATH  Google Scholar 

  • Taillard ED (1993) Parallel iterative search methods for vehicle routing problems. Networks 23:661–672

    Article  MATH  Google Scholar 

  • Tarantilis CD (2005) Solving the vehicle routing problem with adaptive memory programming methodology. Comput Oper Res 32(9):2309–2327

    Article  MATH  MathSciNet  Google Scholar 

  • Tarantilis CD, Kiranoudis CT (2002) BoneRoute: an adaptive memory-based method for effective fleet management. Ann Oper Res 115(1):227–241

    Article  MATH  MathSciNet  Google Scholar 

  • Tarantilis CD, Kiranoudis CT, Vassiliadis VS (2002) A list based threshold accepting algorithm for the capacitated vehicle routing problem. Int J Comput Math 79(5):537–553

    Article  MATH  MathSciNet  Google Scholar 

  • Teo J, Abbass HA (2003) A true annealing approach to the marriage in honey bees optimization algorithm. Int J Comput Intell Appl 3(2):199–211

    Article  Google Scholar 

  • Teodorovic D, Dell’Orco M (2005) Bee colony optimization—a cooperative learning approach to complex transportation problems. In: Advanced OR and AI methods in transportation, pp 51–60

  • Toth P, Vigo D (2002) The vehicle routing problem. Monographs on discrete mathematics and applications. Siam, Philadelphia

  • Wedde HF, Farooq M, Zhang Y (2004) BeeHive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Dorigo M (ed) Ant colony optimization and swarm intelligence, LNCS 3172. Springer, Berlin, pp 83–94

  • Yang XS (2005) Engineering optimizations via nature-inspired virtual bee algorithms. In: Yang JM, Alvarez JR (eds) IWINAC 2005, LNCS 3562. Springer-Verlag, Berlin, pp 317–323

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Marinakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinakis, Y., Marinaki, M. & Dounias, G. Honey Bees Mating Optimization algorithm for large scale vehicle routing problems. Nat Comput 9, 5–27 (2010). https://doi.org/10.1007/s11047-009-9136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-009-9136-x

Keywords

Navigation