Skip to main content
Log in

Relation Between Coating Parameters and Structural and Mechanical Properties of Magnetron Sputtered TiAlN Coatings

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, it is aimed to investigate the structural and mechanical properties of TiAlN coatings deposited by the magnetron sputtering method on silicon substrates using a compound Ti0.5Al0.5 target at different nitrogen partial pressures of 0.3, 0.6 and 1.2 mtorr, substrate bias voltages of 0, −100 and −200 V and target to substrate distances of 6, 11, 16 and 21 cm. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, atomic force microscopy, the CSEM nano-hardness tester and CSEM-Calotest were used to characterize the coatings. The results showed that the hardness and mechanical properties of the coatings increased at low nitrogen pressures and high bias voltages, and that target to substrate distance showed a significant effect on the structural and mechanical properties of the coatings. With a shorter target to substrate distance, densified TiAlN coatings of substantially higher hardness and Ti content were produced with enhanced deposition rate. Furthermore, 11 cm target to substrate distance was found as the critical distance for the hardness and Al content of the coatings, especially at low bias voltage and low nitrogen pressure, respectively. In addition, X-ray diffraction analysis in this study showed that short target to substrate distances and high bias voltages indicated significant effect on a (2 0 0) preferred orientation of the NaCl structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Urtekin, L.; Kucukturk, G.; Karacay, T.; Uslan, I.; Salman, S.: An investigation of thermal properties of zirconia coating on aluminum. Arabian J. Sci. Eng. 37(8), 2323–2332 (2012)

    Article  Google Scholar 

  2. Witkea, U.; Schuelkeb, T.; Schultricha, B.; Siemrotha, P.; Vetter, J.: Comparison of filtered high-current pulsed arc deposition f-HCA with conventional vacuum arc methods. Surf. Coat. Technol. 126, 81–88 (2000)

    Article  Google Scholar 

  3. Kelly, P.J.; Arnell, R.D.: Magnetron sputtering: a review of recent developments and applications. Vacuum 56, 159–172 (2000)

    Article  Google Scholar 

  4. PalDey, S.; Deevi, S.C.: Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review. Mater. Sci. Eng. A 342, 58–79 (2003)

    Article  Google Scholar 

  5. Ersen, O.; Tuilier, M.-H.; Thobor-Keck, A.; Rousselot, C.; Cortès, R.: Relation between interfacial structure and mechanical properties in AlN/TiN bilayers investigated by EXAFS. Nucl. Instr. Meth. B 234, 308–320 (2005)

  6. Suresha, S.J.; Bhide, R.; Jayaram, V.; Biswas, S.K.: Processing, microstructure and hardness of TiN/(Ti, Al)N multilayer coatings. Mater. Sci. Eng. A 429, 252–260 (2006)

    Article  Google Scholar 

  7. William Grips, V.K.; Barshilia, H.C.; Ezhil Selvi, V.; Kalavati Rajam, K.S.: Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering. Thin Solid Films 514, 204–211 (2006)

  8. Xiang, Y.; Hua, M.; Cheng-biao, W.; Zhi-qiang, F.; Yang, L.: Investigation of Ti/TiN multilayered films in a reactive mid-frequency dual-magnetron sputtering. Appl. Surf. Sci. 253, 3705–3711 (2007)

    Article  Google Scholar 

  9. Quesada, F.; Mariño, A.; Restrepo, E.: TiAlN coatings deposited by r.f. magnetron sputtering on previously treated ASTM A36 steel. Surf. Coat. Technol. 201, 2925–2929 (2006)

    Article  Google Scholar 

  10. Fukumoto, N.; Ezura, H.; Yamamoto, K.; Hotta, A.; Suzuki, T.: Effects of bilayer thickness and post-deposition annealing on the mechanical and structural properties of (Ti,Cr,Al)N/(Al,Si)N multilayer coatings. Surf. Coat. Technol. 203, 1343–1348 (2009)

    Article  Google Scholar 

  11. Hsieh, J.H.; Liang, C.; Yu, C.H.; Wu, W.: Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings using unbalanced magnetron sputtering. Surf. Coat. Technol. 108–109, 132–137 (1998)

  12. Raveh, A.; Weiss, M.; Pinkas, M.; Rosen, D.Z.; Kimmel, G.: Graded Al–AlN, TiN, and TiAlN multilayers deposited by radio-frequency reactive magnetron sputtering. Surf. Coat. Technol. 114, 269–277 (1999)

    Article  Google Scholar 

  13. Khrais, S.K.; Lin, Y.J.: Wear mechanisms and tool performance of TiAlN PVD coated inserts during machining of AISI 4140 steel. Wear 262, 64–69 (2007)

    Article  Google Scholar 

  14. Santana, A.E.; Karimi, A.; Derflinger, V.H.; Schütze, A.: Microstructure and mechanical behavior of TiAlCrN multilayer thin films. Surf. Coat. Technol. 177–178, 334–340 (2004)

  15. Wadsworth, I.; Smith, I.J.; Donohue, L.A.; Münz, W.-D.: Thermal stability and oxidation resistance of TiAlN/CrN multilayer coatings. Surf. Coat. Technol. 94–95, 315–321 (1997)

  16. Salas, O.; Kearns, K.; Carrera, S.; Moore, J.J.: Tribological behavior of candidate coatings for Al die casting dies. Surf. Coat. Technol. 172, 117–127 (2003)

    Article  Google Scholar 

  17. Panjan, P.; Bončina, I., Bevk, J.; Čekada, M.: PVD hard coatings applied for the wear protection of drawing dies. Surf. Coat. Technol. 200, 133–136 (2005)

  18. Thobor, A.; Rousselot, C.; Clement, C.; Takadoum, J.; Martin, N.; Sanjines, R.; Levy, F.: Enhancement of mechanical properties of TiN/AlN multilayers by modifying the number and the quality of interfaces. Surf. Coat. Technol. 124, 210–221 (2000)

    Article  Google Scholar 

  19. Hovsepian, P.Eh.; Lewis, D.B.; Luo, Q.; Münz, W.-D.; Mayrhofer, P.H.; Mitterer, C.; Zhou, Z.; Rainforth, W.M.: TiAlN based nanoscale multilayer coatings designed to adapth their tribological properties at elevated temperatures. Thin Solid Films 485, 160–168 (2005)

  20. Manaila, R.; Devenyi, A.; Biro, D.; David, L.; Barna, P.B.; Kovacs, A.: Multilayer TiAlN coatings with composition gradient. Surf. Coat. Technol. 151–152, 21–25 (2002)

  21. Tönshoff, K.; Karpuschewski, B.; Mohlfeld, A.; Leyendecker, T.; Erkens, G.; Fuß, H.G.; Wenke, R.: Performance of oxygen-rich TiALON coatings in dry cutting applications. Surf. Coat. Technol. 108–109, 535–542 (1998)

  22. Derflinger, V.H.; Schütze, A.; Ante, M.: Mechanical and structural properties of various alloyed TiAlN-based hard coatings. Surf. Coat. Technol. 200, 4693–4700 (2006)

    Article  Google Scholar 

  23. Tentardini, E.K.; Aguzzoli, C.; Castro, M.; Kunrath, A.O.; Moore, J.J.; Kwietniewski, C.;Baumvol, I.J.R.: Reactivity between aluminum and (Ti,Al)N coatings for casting dies. Thin Solid Films 516, 3062–3069 (2008)

    Article  Google Scholar 

  24. Neidhardt, J.; Mráz, S.; Schneider, J.M.; Strub, E.; Bohne, W.; Liedke, B.; Möller, W.; Mitterer, C.: Experiment and simulation of the compositional evolution of Ti–B thin films by sputtering of a compound target. J. Appl. Phys. 104, 063304 (2008)

  25. Jeong, J.J.; Hwang, S.K.; Lee, C.M.: Nitrogen flow rate dependence of the growth morphology of TiAlN films deposited by reactive sputtering. Surf. Coat. Technol. 151–152, 82–85 (2002)

  26. Ramana, J.V.; Kumar, S.; David, C.; Raju, V.S.: Structure, composition and microhardness of (Ti, Zr)N and (Ti, Al)N coatings prepared by dc magnetron sputtering. Mater. Lett. 58, 2553–2558 (2004)

    Article  Google Scholar 

  27. Oliveira, J.C.; Manaia, A.; Cavaleiro, A.; Vieira, M.T.: Structure, hardness and thermal stability of Ti(Al,N) coatings. Surf. Coat. Technol. 201, 4073–4077 (2006)

    Article  Google Scholar 

  28. Oliveira, J.C.; Manaia, A.; Dias, J.P.; Cavaleiro, A.; Teer, D.; Taylor, S.: The structure and hardness of magnetron sputtered Ti-Al-N thin films with low N contents (< 42 at.}). Surf. Coat. Technol. 200, 6583–6587 (2006)

  29. Wuhrer, R.; Yeung, W.Y.: Effect of target-substrate working distance on magnetron sputter deposition of nanostructured titanium aluminium nitride coatings. Scripta Mater. 49, 199–205 (2003)

    Article  Google Scholar 

  30. Barshilia, H.C.; Yogesh, K.; Rajam, K.S.: Deposition of TiAlN coatings using reactive bipolar-pulsed direct current unbalanced magnetron sputtering. Vacuum 83, 427–434 (2009)

    Article  Google Scholar 

  31. Ahlgren, M.; Blomqvist, H.: Influence of bias variation on residual stress and texture in TiAlN PVD coatings. Surf. Coat. Technol. 200, 157–160 (2005)

    Article  Google Scholar 

  32. Zywitzki, O.; Klostermann, H.; Fietzke, F.; Modes, T.: Structure of superhard nanocrystalline (Ti, Al)N layers deposited by reactive pulsed magnetron sputtering. Surf. Coat. Technol. 200, 6522–6526 (2006)

    Article  Google Scholar 

  33. You, Y.Z.; Kim, D.: Influence of incidence angle and distance on the structure of aluminium nitride films prepared by reactive magnetron sputtering. Thin Solid Films 515, 2860–2863 (2007)

    Article  Google Scholar 

  34. Chen, L.; Moser, M.; Du, Y.; Mayrhofer, P.H.: Compositional and structural evolution of sputtered Ti–Al–N. Thin Solid Films 517, 6635–6641 (2009)

    Article  Google Scholar 

  35. Panich, N.; Sun, Y.: Effect of substrate rotation on structure, hardness and adhesion of magnetron sputtered TiB2 coating on high speed steel. Thin Solid Films 500, 190–196 (2006)

    Article  Google Scholar 

  36. Danisman, K.; Danisman, S.; Savas, S.; Dalkiran, I.: Modelling of the hysteresis effect of target voltage in reactive magnetron sputtering process by using neural networks. Surf. Coat. Technol. 204(5), 610–614 (2009)

    Article  Google Scholar 

  37. Rossnagel, S.M.: Thin film deposition with physical vapour deposition and related technologies. J. Vac. Sci. Technol. A 21(5), 74–87 (2003)

    Article  Google Scholar 

  38. Oliver, W.C.; Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 76, 1564–1583 (1992)

    Article  Google Scholar 

  39. Pfeiler, M.; Kutschej, K.; Penoy, M.; Michotte, C.; Mitterer, C.; Kathrein, M.: The influence of bias voltage on structure and mechanical/tribological properties of arc evaporated Ti–Al–V–N coatings. Surf. Coat. Technol. 202, 1050–1054 (2007)

    Article  Google Scholar 

  40. Sáfrán, G.; Reinhard, C.; Ehiasarian, A.P.; Barna, P.B.; Székely, L.; Geszti, O.; Hovsepian, P.Eh.: Influence of the bias voltage on the structure and mechanical performance of nanoscale multilayer CrAlYN/CrN physical vapor deposition coatings. J. Vac. Sci. Technol. A 27(2), 174–182 (2009)

  41. Petrov, I.; Hultman, L.; Sundgren, J.-E.; Greene, J.E.: Polycrystalline TiN films deposited by reactive bias magnetron sputtering: effects of ion bombardment on resputtering rates, film composition, and microstructure. J. Vac. Sci. Technol. A 10(2), 265–272 (1992)

    Article  Google Scholar 

  42. Leyland, A.; Matthews, A.: On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246, 1–11(2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şengül Danişman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danişman, Ş., Savaş, S. Relation Between Coating Parameters and Structural and Mechanical Properties of Magnetron Sputtered TiAlN Coatings. Arab J Sci Eng 39, 5025–5034 (2014). https://doi.org/10.1007/s13369-014-1080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1080-0

Keywords

Navigation