Skip to main content
Log in

Hydroelastic instability of viscoelastic fluids in developing flow through a compliant channel

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Linear stability of a viscoelastic fluid obeying the Walters’ B model is analytically and numerically investigated in the entrance region of a plane channel formed between two parallel plates. The plates are compliant and obey the two degree-of-freedom von Karman solid model. Having obtained the base-flow velocity profiles using the boundary-layer theory, their vulnerability to infinitesimally small varicose disturbances is investigated using the temporal, normal-mode, linear stability analysis. The results obtained show that a fluid’s elasticity has a stabilizing effect on the developing velocity profiles. The distance at which the flow becomes unstable shifts further downstream (i.e., towards the fully-developed section) of the channel when the Deborah number is increased. An increase in the flexural rigidity of the plates is shown to have a stabilizing effect on the short waves (i.e., the flutter modes) whereas an increase in its mass can dramatically destabilize such modes. The flow becomes more stable when the stiffness of the soft matter restraining the vertical movement of the plates is increased with the effect being more significant on the long waves (i.e., flow-induced modes). Boosting the dissipating effect of this material is predicted to have a stabilizing effect on the short waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariel, P.D., 2008, Two dimensional stagnation point flow of an elastico-viscous fluid with partial slip, ZAMM-Z. Angew. Math. Mech.88, 320–324.

    Article  Google Scholar 

  • Bauchau, O.A. and J.I. Craig, Structural Analysis, 2009, Springer.

  • Beard, D.W. and K. Walters, 1964, Elastico-viscous boundary-layer flows I. Two-dimensional flow near a stagnation point, Math. Proc. Camb. Philos. Soc.60, 667–674.

    Article  Google Scholar 

  • Bewersdorff, H.W., 1991, Turbulence structure of dilute polymer and surfactant solutions in artificially roughened pipes, 6th European Drag Reduction Working Meeting, Eindhoven, Netherlands, 347-368.

  • Biau, D., 2008, Linear stability of channel entrance flow, Eur. J. Mech. B-Fluids27, 579–590.

    Article  Google Scholar 

  • Bird, R.B., R.C. Armstrong, and O. Hassager, 1987, Dynamics of Polymeric Liquids Vol. 1: Fluid Mechanics, 2nd ed., John Wiley and Sons Inc., New York.

    Google Scholar 

  • Burrell, G.L., N.F. Dunlop, and F. Separovic, 2010, Non-Newtonian viscous shear thinning in ionic liquids, Soft Matter6, 2080–2086.

    Article  CAS  Google Scholar 

  • Carpenter, P.W. and A.D. Garrad, 1985, The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities, J. Fluid Mech.155, 465–510.

    Article  Google Scholar 

  • Carpenter, P.W. and A.D. Garrad, 1986, The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities, J. Fluid Mech.170, 199–232.

    Article  Google Scholar 

  • Carpenter, P.W. and J.S.B. Gajjar, 1990, A general theory for two- and three-dimensional wall-mode instabilities in boundary layers over isotropic and anisotropic compliant walls. Theor. Comput. Fluid Dyn.1, 349–378.

    Article  Google Scholar 

  • Carpenter, P.W., C. Davies, and A.D. Lucey, 2000, Hydrodynamics and compliant walls: Does the dolphin have a secret?, Curr. Sci.79, 758–765.

    Google Scholar 

  • Chen, T.S. and E.M. Sparrow, 1967, Stability of the developing laminar flow in a parallel-plate channel, J. Fluid Mech.30, 209–224.

    Article  Google Scholar 

  • Chaudhary, I., P. Garg, V. Shankar, and G. Subramanian, 2019, Elasto-inertial wall mode instabilities in viscoelastic plane Poiseuille flow, J. Fluid Mech.881, 119–163.

    Article  CAS  Google Scholar 

  • Chun, D.H. and W.H. Schwarz, 1968, Stability of a plane Poiseuille flow of a second-order fluid, Phys. Fluids11, 5–9.

    Article  Google Scholar 

  • Davey, A., 1973, A simple numerical method for solving Orr-Sommerfeld problems, Q. J. Mech. Appl. Math.26, 401–411.

    Article  Google Scholar 

  • Davies, C. and P.W. Carpenter, 1997a, Instabilities in a plane channel flow between compliant walls, J. Fluid Mech.352, 205–243.

    Article  CAS  Google Scholar 

  • Davies, C. and P.W. Carpenter, 1997b, Numerical simulation of the evolution of Tollmien-Schlichting waves over finite compliant panels, J. Fluid Mech.335, 361–392.

    Article  CAS  Google Scholar 

  • Dervaux, J., P. Ciarletta, and M.B. Amar, 2008, Morphogenesis of thin hyperelastic plates: A constitutive theory of biological growth in the Foppl-von Karman limit, J. Mech. Phys. Solids57, 458–471.

    Article  CAS  Google Scholar 

  • Draad, A.A., G.D.C. Kuiken, and F.T.M. Nieuwstadt, 1998, Laminar-turbulent transition in pipe flow for Newtonian and non-Newtonian fluids, J. Fluid Mech.377, 267–312.

    Article  CAS  Google Scholar 

  • Drazin, P.G., 2002, Introduction to Hydrodynamic Stability, Cambridge University Press, New York.

    Book  Google Scholar 

  • Duan, W.H. and C.M. Wang, 2009, Nonlinear bending and stretching of a circular graphene sheet under a central point load, Nanotechnology20, 075702.

    Article  CAS  Google Scholar 

  • Eggleton, C.D., J.H. Ferziger, and T.H. Pulliam, 1994, Moderate Reynolds number entry flow and boundary-layer approximations for a viscoelastic fluid, Phys. Fluids6, 700–709.

    Article  Google Scholar 

  • Garg, V.K. and S.C. Gupta, 1981, Nonparallel effects on the stability of developing flow in a channel, Phys. Fluids24, 1752–1754.

    Article  CAS  Google Scholar 

  • Gavriely, N., T.R. Shee, D.W. Cugell, and J.B. Grotberg, 1989, Flutter in flow-limited collapsible tubes: A mechanism for generation of wheezes, J. Appl. Physiol.66, 2251–2261.

    Article  CAS  Google Scholar 

  • Grotberg, J.B. and auS.H. Davis}, 1980, Fluid-dynamic flapping of a collapsible channel: Sound generation and flow limitation, J. Biomech.13, 219–230.

    Article  CAS  Google Scholar 

  • Hifdi, A., M.O. Touhami, and J.K. Naciri, 2004, Channel entrance flow and its linear stability, J. Stat. Mech.-Theory Exp.2004, P06003.

    Article  Google Scholar 

  • Hsiao, K.W., J. Dinic, Y. Ren, V. Sharma, and C.M. Schroeder, 2017, Passive non-linear microrheology for determining extensional viscosity, Phys. Fluids29, 121603.

    Article  CAS  Google Scholar 

  • Hwang, S.H., M. Litt, and W.C. Forsman, 1969, Rheological properties of mucus, Rheol. Acta8, 438–448.

    Article  Google Scholar 

  • Johnson, M.W. and T.J. Urbanik, 1984, A Nonlinear theory for elastic plates with application to characterizing paper properties, J. Appl. Mech.-Trans. ASME51, 146–152.

    Article  Google Scholar 

  • Labropulu, F., I. Husain, and M. Chinichian, 2004, Stagnation-point flow of the Walters’ B’ fluid with slip, Int. J. Math. Math. Sci.61, 3249–3258.

    Article  Google Scholar 

  • Larose, P. and J.B. Grotberg, 1997, Flutter and long-wave instabilities in compliant channels conveying developing flows, J. Fluid Mech.331, 37–58.

    Article  Google Scholar 

  • Lucey, A.D. and P.W. Carpenter, 1995, Boundary layer instability over compliant walls: Comparison between theory and experiment, Phys. Fluids7, 2355–2363.

    Article  CAS  Google Scholar 

  • Macosko, C.W., 1994, Rheology: Principles, Measurements, Applications, VCH publishers.

  • Madani-Tonekaboni, S.A., R. Abkar, and R. Khoeilar, 2012, On the study of viscoelastic Walters’ B fluid in boundary layer flows, Math. Probl. Eng.2012, 861508.

    Article  CAS  Google Scholar 

  • Metzner, A.B. and J.L. White, 1965, Flow behavior of viscoelastic fluids in the inlet region of a channel, AICHE J.11, 989–995.

    Article  CAS  Google Scholar 

  • Naebe, M. and K. Shirvanimoghaddam, 2016, Functionally graded materials: A review of fabrication and properties, Appl. Mater. Today5, 223–245.

    Article  Google Scholar 

  • Patne, R. and V. Shankar, 2019, Stability of flow through deformable channels and tubes: Implications of consistent formulation, J. Fluid Mech.860, 837–885.

    Article  CAS  Google Scholar 

  • Prescher, S., F. Polzer, Y. Yang, M. Siebenbürger, M. Ballauff, and J. Yuan, 2014, Polyelectrolyte as solvent and reaction medium, J. Am. Chem. Soc.136, 12–15.

    Article  CAS  Google Scholar 

  • Quijano, G., A. Couvert, and A. Amrane, 2010, Ionic liquids: Applications and future trends in bioreactor technology, Bioresour. Technol.101, 8923–8930.

    Article  CAS  Google Scholar 

  • Sadri, R.M. and J.M. Floryan, 2002, Entry flow in a channel, Comput. Fluids31, 133–157.

    Article  Google Scholar 

  • Sajid, M., T. Javed, Z. Abbas, and N. Ali, 2013, Stagnation-point flow of a viscoelastic fluid over a lubricated surface, Int. J. Nonlinear Sci. Numer. Simul.14, 285–290.

    Article  Google Scholar 

  • Sapir, M.H. and E.L. Reiss, 1979, Dynamic buckling of a nonlinear Timoshenko beam, SIAM J. Appl. Math.37, 290–301.

    Article  Google Scholar 

  • Shankar, V., and V. Kumaran, 2002, Stability of wall modes in fluid flow past a flexible surface, Phys. Fluids14, 2324–2338.

    Article  CAS  Google Scholar 

  • Smith, F.T. and R.J. Bodonyi, 1980, On the stability of the developing flow in a channel or circular pipe, Q. J. Mech. Appl. Math.33, 293–320.

    Article  Google Scholar 

  • Teipel, I., 1988, Stagnation point flow of a non-Newtonian second order fluid, Trans. Can. Soc. Mech. Eng.12, 57–61.

    Article  Google Scholar 

  • Tsigklifis, K. and A.D. Lucey, 2017, The interaction of Blasius boundary-layer flow with a compliant panel: Global, local and transient analyses, J. Fluid Mech.827, 155–193.

    Article  CAS  Google Scholar 

  • Weiss, E. and R. Abu-Reziq, 2017, Ionic liquid-based polymeric microreactors and their applicability, J. Mater. Sci.52, 10637–10647.

    Article  CAS  Google Scholar 

  • Yue, Y.M., C.Q. Ru, and K.Y. Xu, 2017, Modified von Kármán equations for elastic nanoplates with surface tension and surface elasticity, Int. J. Non-Linear Mech.88, 67–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayvan Sadeghy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarifard, M., Aghaee, Z., Pourjafar, M. et al. Hydroelastic instability of viscoelastic fluids in developing flow through a compliant channel. Korea-Aust. Rheol. J. 32, 99–119 (2020). https://doi.org/10.1007/s13367-020-0010-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-020-0010-9

Keywords

Navigation