Skip to main content
Log in

Effects of dispersion state on rheological and electrical characteristics of concentrated multiwalled carbon nanotube suspensions

  • Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

We report a dispersion state of concentrated multiwalled carbon nanotube (MWCNT) suspensions depending on their iterative milling process. The rheological properties of concentrated suspensions prepared with different milling times were measured using a Couette-typed rotation rheometer, and their electrical characteristics were investigated via an LCR meter. The relationships of the rheological and electrical properties with the dispersion state of the MWCNT were examined. The results of both the rheological and electrical measurements indicated that the de-bundling and dispersion of the MWCNT induced by the iterative milling yielded a percolation microstructure and an electrically conductive structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajmal, M. and A. Maqsood, 2008, AC conductivity, density related and magnetic properties of Ni1-xZnxFe2C4 ferrites with the variation of zinc concentration, Mater. Lett. 62, 2077–2080.

    Article  Google Scholar 

  • Alvarez, N.T., T. Ochmann, N. Kienzle, B. Ruff, M. Haase, M.R., T. Hopkins, S. Pixley, D. Mast, M.J. Schulz, and V. Shanov, 2014, Polymer coating of carbon nanotube fibers for electric microcables, Nanomaterials 4, 879–893.

    Article  Google Scholar 

  • Bahr, J.L., E.T. Mickelson, M.J. Bronikowski, R.E. Smalley, and J.M. Tour, 2001, Dissolution of small diameter single-wall carbon nanotubes in organic solvents?, Chem. Commun. 2, 193–194.

    Article  Google Scholar 

  • Chen, X.L., X.Z. Tang, Y.N. Liang, J.W. Cheah, P. Hu, and X. Hu, 2016, Controlled thermal functionalization for dispersion enhancement of multi-wall carbon nanotube in organic solvents, J. Mater. Sci. 51, 5625–5634.

    Article  Google Scholar 

  • Dai, L., D.W. Chang, J.B. Baek, and W. Lu, 2012, Carbon nano-materials: Carbon nanomaterials for advanced energy conversion and storage, Small 8, 1122–1122.

    Article  Google Scholar 

  • Du, F., R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer, and K.I. Winey, 2004, Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity, Macromolecules 37, 9048–9055.

    Article  Google Scholar 

  • Hamon, M.A., H. Hui, P. Bhowmik, H.M.E. Itkis, and R.C. Haddon, 2002, Ester-functionalized soluble single-walled carbon nanotubes, Appl. Phys. A-Mater. Sci. Process. 74, 333–338.

    Article  Google Scholar 

  • He, L.X. and S.C. Tjong, 2010, Polymer/ceramic composite hybrids containing multi-walled carbon nanotubes with high dielectric permittivity, Curr. Nanosci. 6, 40–44.

    Article  Google Scholar 

  • Hilding, J., E.A. Grulke, Z.G. Zhang, and F. Lockwood, 2003, Dispersion of carbon nanotubes in liquids, J. Dispersion Sci. Technol. 24, 1–41.

    Article  Google Scholar 

  • Hobbie, E.K. and D.J. Fry, 2007, Rheology of concentrated carbon nanotube suspensions, J. Chem. Phys. 126, 124907.

    Article  Google Scholar 

  • Huang, Y.Y., S.V. Ahir, and E.M. Terentjev, 2006, Dispersion rheology of carbon nanotubes in a polymer matrix, Phys. Rev. B 73, 125422.

    Article  Google Scholar 

  • Kim, B., Y.H. Lee, J.H. Ryu, and K.D. Suh, 2006, Enhanced colloidal properties of single-wall carbon nanotubes in α-terpineol and Texanol, Colloids Surf. A-Physicochem. Eng. Asp. 273, 161–164.

    Article  Google Scholar 

  • Kim, J. and Y. Son, 2016, Effects of matrix viscosity, mixing method and annealing on the electrical conductivity of injection molded polycarbonate/MWCNT nanocomposites, Polymer 88, 29–35.

    Article  Google Scholar 

  • Kinloch, I.A., S.A. Roberts, and A.H. Windle, 2002, A rheological study of concentrated aqueous nanotube dispersions, Polymer 43, 7483–7492.

    Article  Google Scholar 

  • Köhler, A.R., C. Som, A. Helland, and F. Gottschalk, 2008, Studying the potential release of carbon nanotubes throughout the application life cycle, J. Clean Prod. 16, 927–937.

    Article  Google Scholar 

  • Krause, B., M. Mende, P. Pötschke, and G. Petzold, 2010, Dispersibility and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time, Carbon 48, 2746–2754.

    Article  Google Scholar 

  • Liu, J., T. Wang, T. Uchida, and S. Kumar, 2005, Carbon nano-tube core-polymer shell nanofibers, J. App. Polym. Sci. 96, 1992–1995.

    Article  Google Scholar 

  • Mazov, I., V.L. Kuznetsov, I.A. Simonova, A.I. Stadnichenko, A.V. Ishchenko, A.I. Romanenko, E.N. Tkachev, and C.B. Anikeeva, 2012, Oxidation behavior of multiwall carbon nano-tubes with different diameters and morphology, Appl. Surf. Sci. 258, 6272–6280.

    Article  Google Scholar 

  • Michelson, E.T., I.W. Chiang, J.L. Zimmerman, P.J. Boul, J. Lozano, J. Liu, R.E. Smalley, R.H. Hauge, and J.L. Margrave, 1999, Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents, J. Phys. Chem. B 103, 4318–4322.

    Article  Google Scholar 

  • Mishra, S., K.T. Kumaran, R. Sivakumaran, S.P. Pandian, and S. Kundu, 2016, Synthesis of PVDF/CNT and their functionalized composites for studying their electrical properties to analyze their applicability in actuation & sensing, Colloids Surf. A-Physicochem. Eng. Asp. 509, 684–696.

    Article  Google Scholar 

  • Ch, J.S., K.H. Ahn, and J.S. Hong, 2010, Dispersion of entangled carbon nanotube by melt extrusion, Korea-Aust. Rheol. J. 22, 89–94.

    Google Scholar 

  • Piao, S.H., M.H. Kim, H.J. Choi, H. Lee, and J. Park, 2017, Dispersion state and rheological characteristics of carbon nanotube suspensions, J. Ind. Eng. Chem. 52, 369–375.

    Article  Google Scholar 

  • Qian, D., E.C. Dickey, R. Andrews, and T. Rantell, 2000, Load transfer and deformation mechanisms in carbon nanotube polystyrene composites, Appl. Phys. Lett. 76, 2868–2870.

    Article  Google Scholar 

  • Radzuan, N.A.M., M.Y. Zakaria, A.B. Sulong, and J. Sahari, 2017, The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites, Compos. Pt. B-Eng. 110, 153–160.

    Article  Google Scholar 

  • Rausch, J., R.-C. Zhuang, and E. Mäder, 2010, Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media, Compos. Pt. A-Appl. Sci. Manuf. 41, 1038–1046.

    Article  Google Scholar 

  • Rikhtegar, F., S.G. Shabestari, and H. Saghafian, 2015, The homogenizing of carbon nanotube dispersion in aluminum matrix nanocomposite using flake powder metallurgy and ball milling methods, Powder Technol. 280, 26–34.

    Article  Google Scholar 

  • Sobolčiak, P., A. Ali, M.K. Hassan, M.I. Helal, A. Tanvir, A. Popelka, M.A. Al-Maadeed, I. Krupa, and K.A. Mahmoud, 2017, 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties, PloS One 12, e0183705.

    Article  Google Scholar 

  • Wang, H., 2009, Dispersing carbon nanotubes using surfactants, Curr. Opin. Colloid Interface Sci. 14, 364–371.

    Article  Google Scholar 

  • Zhang, K., S.Y. Kim, P. Jariyasakoolroj, S. Chirachanchai, and H.J. Choi, 2017a, Stimuli-response of chlorosilane-functionalized starch suspension under applied electric fields, Polym. Bull. 74, 823–837.

    Article  Google Scholar 

  • Zhang, Z., Z. Zhang, B.N. Hao, H. Zhang, M. Wang, and Y.D. Liu, 2017b, Fabrication of imidazolium-based poly (ionic liquid) microspheres and their electrorheological responses, J. Mater. Sci. 52, 5778–5787.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by both LG Chem. and National Research Foundation of Korea (2018R1A4A1025169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Jin Choi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.H., Kwon, S.H. & Choi, H.J. Effects of dispersion state on rheological and electrical characteristics of concentrated multiwalled carbon nanotube suspensions. Korea-Aust. Rheol. J. 31, 179–186 (2019). https://doi.org/10.1007/s13367-019-0018-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-019-0018-1

Keywords

Navigation