Skip to main content
Log in

Scaling analysis on the linear viscoelasticity of cellulose 1-ethyl-3-methyl imidazolium acetate solutions

  • Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Many researches have studied the viscoelasticity of cellulose/ionic liquid solutions through the conventional scaling rules which assume the monodisperse polymer. However, they are not suitable for cellulose since natural polymers such as cellulose have molecular weight distribution. In this paper, dynamic rheological behaviors of 1-ethyl-3-methyl imidazolium acetate solutions dissolving three kinds of celluloses were measured in a large range of concentrations from the dilute regime to the entangled semidilute regime at 25°C. We compared the viscosity-fitting scaling (Chen et al., 2011) and the phenomenological scaling to replace the conventional scaling. Two scaling methods were applied to the linear viscoelasticity of the cellulose solutions with different molecular weights and molecular weight distributions. The results of each scaling were compared by the superposition of master curves obtained from each scaling. The effects of molecular weight distribution were observed by the dependence of the scaling factors on concentration and molecular weight of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bae, J.-E. and K.S. Cho, 2016, A systematic approximation of discrete relaxation time spectrum from the continuous spectrum. J. Non-Newton. Fluid 235, 64–75.

    Article  Google Scholar 

  • Chen, X., Y. Zhang, H. Wang, S.-W. Wang, S. Liang, and R.H. Colby, 2011, Solution rheology of cellulose in 1-butyl-3-methyl imidazolium chloride. J. Rheol. 55, 485–494.

    Article  Google Scholar 

  • Chen, X., Y. Zhang, L. Cheng, and H. Wang, 2009, Rheology of concentrated cellulose solutions in 1-butyl-3-methylimidazolium chloride. J. Polym. Environ. 17, 273–279.

    Article  Google Scholar 

  • Cho, K.S., 2016, Viscoelasticity of Polymers: Theory and Numerical Algorithms, Springer, New York.

    Book  Google Scholar 

  • Cho, K.S., J.W. Kim, J.-E. Bae, J.H. Youk, H.J. Jeon, and K.-W. Song, 2015, Effect of temporary network structure on linear and nonlinear viscoelasticity of polymer solutions. Korea-Aust. Rheol. J. 27, 151–161.

    Article  Google Scholar 

  • Colby, R.H., 2010, Structure and linear viscoelasticity of flexible polymer solutions: Comparison of polyelectrolyte and neutral polymer solutions. Rheol. Acta 49, 425–442.

    Article  Google Scholar 

  • Colby, R.H., L.J. Fetters, W.G. Funk, and W.W. Graessley, 1991, Effect of concentration and thermodynamic interaction on the viscoelastic properties of polymer solutions. Macromolecules 24, 3873–3882.

    Article  Google Scholar 

  • Collier, J.R., J.L. Watson, B.J. Collier, and S. Petrovan, 2008, Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. II. Solution character and preparation. J. Appl. Polym. Sci. 111, 1019–1027.

    Google Scholar 

  • Dealy, J.M. and R.G. Larson, 2006, Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again, Hanser Verlag, München.

    Book  Google Scholar 

  • Fuchs, K., C. Friedrich, and J. Weese, 1996, Viscoelastic properties of narrow-distribution poly(methyl methacrylates). Macromolecules 29, 5893–5901.

    Article  Google Scholar 

  • Gericke, M., K. Schlufter, T. Lieber, T. Heinze, and T. Budtova, 2009, Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10, 1188–1194.

    Article  Google Scholar 

  • Haward, S.J., V. Sharma, C.P. Butts, G.H. McKinley, S.S. Rahatekar, 2012, Shear and extensional rheology of celllose/ionic liquid solutions. Biomacromolecules 13, 1688–1699.

    Article  Google Scholar 

  • Kim, S., J. Lee, S. Kim, and K.S. Cho, 2018, Applications of Monte Carlo method to nonlinear regression of rheological data. Korea-Aust. Rheol. J. 30, 21–28.

    Article  Google Scholar 

  • Kosan, B., C. Michels, and F. Meister, 2008, Dissolution and forming of cellulose with ionic liquids. Cellulose 15, 59–66.

    Article  Google Scholar 

  • Kosan, B., K. Schwikal, and F. Meister, 2010, Solution states of cellulose in selected direct dissolution agents. Cellulose 17, 495–506.

    Article  Google Scholar 

  • Kuang, Q.L., J.-C. Zhao, Y.-H. Niu, J. Zhang, and Z.-G. Wang, 2008, Cellulose in an ionic liquid: The rheological properties of the solutions spanning the dilute and semidilute regimes. J. Phys. Chem. B 112, 10234–10240.

    Article  Google Scholar 

  • Lee, Y.J., M.K. Kwon, S.J. Lee, S.W. Jeong, H.C. Kim, T.H. Oh, and S.G. Lee, 2016, Influence of water on phase transition and rheological behavior of cellulose/ionic liquid/water ternary systems, J. Appl. Polym. Sci. 134, 44658.

    Google Scholar 

  • Lu, F., B. Cheng, J. Song, and Y. Liang, 2011, Rheological characterization of concentrated cellulose solutions in 1-allyl-3-methylimidazolium chloride. J. Appl. Polym. Sci. 124, 3419–3425.

    Article  Google Scholar 

  • Lu, F., J. Song, B.-W. Cheng, X.-J. Ji, and L.-J. Wang, 2013, Viscoelasticity and rheology in the regimes from dilute to concentrated in cellulose 1-ethyl-3-methylimidazolium acetate solutions. Cellulose 20, 1343–1352.

    Article  Google Scholar 

  • Lv, Y., J. Wu, J. Zhang, Y. Niu, C. Y. Liu, J. He, and J. Zhang, 2012, Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions. Polymer 53, 2524–2531.

    Article  Google Scholar 

  • Maeda, A., T. Inoue, and T. Sato, 2013, Dynamic segment size of the cellulose chain in an ionic liquid. Macromolecules 46, 7118–7124.

    Article  Google Scholar 

  • Malkin, A.Y. and I. Masalova, 2001, From dynamic modulus via different relaxation spectra to relaxation and creep functions. Rheol. Acta 40, 261–271.

    Article  Google Scholar 

  • Morse, D.C., 1997, Viscoelasticity of tightly entangled solutions of semiflexible polymer. Phys. Rev. E 58, R1237–R1240.

    Article  Google Scholar 

  • Regalado E.J., J. Selb, and F. Candau, 1999, Viscoelastic behavior of semidilute solutions of multi sticker polymer chains. Macromolecules 32, 8501–8588.

    Article  Google Scholar 

  • Rubinstein, M. and R.H. Colby, 2003, Polymer Physics, Oxford University Press, New York.

    Google Scholar 

  • Sammons, R.J., R. Collier, T.G. Rials, and S. Petrovan, 2008, Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. I. Shear rheology. J. Appl. Polym, Sci. 110, 1175–1181.

    Article  Google Scholar 

  • Seddon, K., 1996, Ionic liquids for clean technology. J. Chem. Tech. Biotechnol. 68, 351–356.

    Article  Google Scholar 

  • Sescousse, R., K.A. Le, M.E. Ries, and T. Budtova, 2010, Viscosity of cellulose-imidazolium-based ionic liquid solutions. J. Phys. Chem. B 114, 7222–7228.

    Article  Google Scholar 

  • Song, H., J. Zhang, Y. Niu, and Z. Wang, 2010, Phase transition and rheological behaviors of concentrated cellulose/ionic liquid solutions. J. Phys. Chem. B 114, 6006–6013.

    Article  Google Scholar 

  • Swatloski, R.P., S.K. Spear, J.D. Holbrey, and R.D. Rogers, 2002, Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975.

    Article  Google Scholar 

  • Tsenoglou, C., 1991, Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers. Macromolecules 24, 1762–1767.

    Article  Google Scholar 

  • Wang, L., L. Gao, B. Cheng, X. Ji, J. Song, and F. Lu, 2014, Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethylsulfoxide. Carbohyd. Polym. 110, 292–297.

    Article  Google Scholar 

  • Watanabe, H., 1999, Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci. 24, 1253–1403.

    Article  Google Scholar 

  • Xia, X., Y. Yao, M. Gong, H. Wang, and Y. Zhang, 2014, Rheological behaviors of cellulose/[BMIM]Cl solutions varied with the dissolving process, J. Polym. Res. 21, 512.

    Article  Google Scholar 

  • Zhang, H., J. Wu, J. Zhang, and J. He, 2005, 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules 38, 8272–8277.

    Article  Google Scholar 

  • Zhu, S., Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding, and G. Wu, 2006, Dissolution of cellulose with ionic liquids and its application: A mini-review. Green Chem. 8, 325–327.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mid-Career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2017R1A2B1005506). This work was also supported by the DGIST R&D Program of the Ministry of Science and ICT (18-ET-02) of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Soo Cho.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, M.K., Lee, J., Cho, K.S. et al. Scaling analysis on the linear viscoelasticity of cellulose 1-ethyl-3-methyl imidazolium acetate solutions. Korea-Aust. Rheol. J. 31, 123–139 (2019). https://doi.org/10.1007/s13367-019-0014-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-019-0014-5

Keywords

Navigation