Skip to main content
Log in

An experimental investigation on impact process of Boger drops onto solid surfaces

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

In this paper, the impact dynamics of Boger drops on dry solid surfaces is investigated experimentally. The effects of viscosity, surface wettability, and impact velocity on the spreading and receding behavior of the Newtonian and viscoelastic drops are studied in detail. They are impinged upon Plexiglas and glass substrates, which have hydrophilic properties, at the impact velocities 4.03 m/s and 4.22 m/s. The polyacrylamide drops spread out more widely and recede more rapidly than the glycerin drops. The impact velocity and the liquid viscosity have more influence on the spreading phase. However, the surface wettability shows only a minute effect on the spreading phase but a very significant effect on the receding phase. On the receding stage, the effect of impact velocity was only observed on the behavior of the low-viscosity drops. Therefore, when the low-viscosity drops impact on a hydrophilic substrate, the higher impact velocity, the receding velocity is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, S.M. and S.Y. Lee, 2009, Examination of spread-recoil behavior of a shear-thinning liquid drop on a dry wall, J. ILASS-Korea 14(3), 131–138.

    Google Scholar 

  • An, S.M. and S.Y. Lee, 2012a, Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces, Exp. Therm. Fluid Sci. 37, 37–45.

    Article  Google Scholar 

  • An, S.M. and S.Y. Lee, 2012b, Maximum spreading of a shearthinning liquid drop impacting on dry solid surfaces, Exp. Therm. Fluid Sci. 38, 140–148.

    Article  Google Scholar 

  • Bartolo, D., A. Boudaoud, G. Narcy, and D. Bonn, 2007, Dynamics of non-Newtonian droplets, Phys. Rev. Lett. 99, 174502.

    Article  Google Scholar 

  • Bergeron, V., D. Bonn, J.Y. Martin, and L. Vovelle, 2000, Controlling droplet deposition with polymer additives, Nature 405, 772–775.

    Article  Google Scholar 

  • Bertola, V., 2004, Drop impact on a hot surface. Effect of a polymer additive, Exp. Fluids 37, 653–664.

    Article  Google Scholar 

  • Bertola, V., 2009, An experimental study of bouncing Leidenfrost drops: Comparison between Newtonian and viscoelastic liquids, Int. J. Heat Mass Transfer. 52, 1786–1793.

    Article  Google Scholar 

  • Bertola, V., 2010, Effect of polymer additives on the apparent dynamic contact angle of impacting drops, Colloid Surf. A: Physicochem. Eng. Asp. 363, 135–140.

    Article  Google Scholar 

  • Biolè, D. and V. Bertola, 2015, A goniometric mask to measure contact angles from digital images of liquid drops, Colloid Surf. A: Physicochem. Eng. Asp. 467, 149–156.

    Article  Google Scholar 

  • Chandra, S. and C.T. Avedisian, 1992, Observations of droplet impingement on a ceramic porous surface, Int. J. Heat Mass Transfer. 35, 2377–2388.

    Article  Google Scholar 

  • Copper-White, J.J., R. Crooks, and D.V. Boger, 2002a, A drop impact study of worm-like viscoelastic surfactant solutions, Colloid Surf. A: Physicochem. Eng. Asp. 210, 105–123.

    Article  Google Scholar 

  • Copper-White, J.J., R. Crooks, K. Chockalingam, and D.V. Boger, 2002b, Dynamics of polymer surfactant complexes: elongational properties and drop impact behavior, Ind. Eng. Chem. Res. 41, 6443–6459.

    Article  Google Scholar 

  • Crooks, R. and D.V. Boger, 2000, Influence of fluid elasticity on drops impacting on dry surfaces, J. Rheol. 44, 973–996.

    Article  Google Scholar 

  • Crooks, R., J. Copper-White, and D.V. Boger, 2001, The role of dynamic surface tension and elasticity on the dynamics of drop impact, Chem. Eng. Sci. 56, 5575–5592.

    Article  Google Scholar 

  • Dong, H., W.W. Carr, and J.F. Morris, 2006, Visualization of drop-on-demand inkjet: Drop formation and deposition, Rev. Sci. Instrum. 77, 085101.

    Article  Google Scholar 

  • Edgerton, H.E. and J.R. Killian, 1954, Flash!: Seeing the Unseen by Ultra High-Speed Photography, 2nd Ed., CT Branford Co., Boston.

    Google Scholar 

  • German, G. and V. Bertola, 2009, Impact of shear-thinning and yield-stress drops on solid substrates, J. Phys.: Condens. Matter 21, 375111.

    Google Scholar 

  • Han, J. and C. Kim, 2013, Spreading of Boger fluid on horizontal surface, J. Non-Newton. Fluid Mech. 202, 120–130.

    Article  Google Scholar 

  • Huang, H., 2005, Non-Newtonian effects on inkjet droplets formation,” Nieuw Archief voor Wiskunde 5(6), 63–68.

    Google Scholar 

  • Huang, X., P. Chen, M. Lan, X. Wang, and G. Liao, 2013, Experimental study of water drops with additive impact on wood surfaces, Procedia Eng. 62, 852–858.

    Article  Google Scholar 

  • Jung, S., 2011, Fluid Characterisation And Drop Impact In Inkjet Printing For Organic Semiconductor Devices, Ph.D Thesis, University of Cambridge.

    Google Scholar 

  • Jung, S. and I.M. Hutchings, 2012, The impact and spreading of a small liquid drop on a non-porous substrate over an extended time scale, Soft Matter 8, 2686–2696.

    Article  Google Scholar 

  • Jung, S., S.D. Hoath, and I.M. Hutchings, 2013, The role of viscoelasticity in drop impact and spreading for inkjet printing of polymer solution on a wettable surface, Microfluid. Nanofluid. 14, 163–169.

    Article  Google Scholar 

  • Luu, L.H. and Y. Forterre, 2009, Drop impact of yield-stress fluids, J. Fluid Mech. 632, 301–327.

    Article  Google Scholar 

  • Moon, J.H., J.B. Lee, and S.H. Lee, 2013, Dynamic behavior of non-Newtonian droplets impinging on solid surfaces, Mater. Trans. 54, 260–265.

    Article  Google Scholar 

  • Nigen, S., 2005, Experimental investigation of the impact of an (apparent) yield-stress material, Atom. Sprays 15, 103–118.

    Article  Google Scholar 

  • Rafai, S., D. Bonn, and A. Boudaoud, 2004, Spreading of non-Newtonian fluids on hydrophilic surfaces, J. Fluid Mech. 513, 77–85.

    Article  Google Scholar 

  • Rioboo, R., M. Marengo, and C. Tropea, 2002, Time evolution of liquid drop impact onto solid, dry surfaces, Exp. Fluids 33, 112–124.

    Article  Google Scholar 

  • Roisman, I.V., 2009, Inertia dominated drop collisions. II. An analytical solution of the Navier-Stokes equations for a spreading viscous film, Phys. Fluids 21, 052104.

    Article  Google Scholar 

  • Roisman, I.V., R. Rioboo, and C. Tropea, 2002, Normal impact of a liquid drop on a dry surface: Model for spreading and receding, Proc. R. Soc. London Ser. A: Math. Phys. Eng. Sci. 458, 1411–1430.

    Article  Google Scholar 

  • Roux, D.C., J.J. Cooper-White, G.H. McKinley, and V. Tirtaatmadja, 2003, Drop impact of Newtonian and elastic fluids, Phys. Fluids 15, S12.

    Article  Google Scholar 

  • Saïdi, A, C. Martin, and A. Magnin, 2010, Influence of yield stress on the fluid drop impact control, J. Non-Newton. Fluid Mech. 165, 596–606.

    Article  Google Scholar 

  • Scheller, B.L. and D.W. Bousfield, 1995, Newtonian drop impact with a solid surface, AIChE J. 41, 1357–1367.

    Article  Google Scholar 

  • Smith, M.I. and V. Bertola, 2010, Effect of polymer additives on the wetting of impacting droplets, Phys. Rev. Lett. 104, 154502.

    Article  Google Scholar 

  • Smith, M.I. and V. Bertola, 2011, Particle velocimetry inside Newtonian and non-Newtonian droplets impacting a hydrophobic surface, Exp. Fluids 50, 1385–1391.

    Article  Google Scholar 

  • Son, Y. and C. Kim, 2009, Spreading of inkjet droplet of non-Newtonian fluid on solid surface with controlled contact angle at low Weber and Reynolds numbers, J. Non-Newton. Fluid Mech. 162, 78–87.

    Article  Google Scholar 

  • Son, Y., C. Kim, D.H. Yang, and D.J. Ahn, 2008, Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers, Langmuir 24, 2900–2907.

    Article  Google Scholar 

  • Thoroddsen, S.T. and J. Sakakibara, 1998, Evolution of the fingering pattern of an impacting drop, Phys. Fluids 10, 1359–1374.

    Article  Google Scholar 

  • Thoroddsen, S.T., T.G. Etoh, and K. Takehara, 2008, High-speed imaging of drops and bubbles, Annu. Rev. Fluid Mech. 40, 257–285.

    Article  Google Scholar 

  • Van Dam, D.B. and C.L. Clerc, 2004, Experimental study of the impact of an ink-jet printed droplet on a solid substrate, Phys. Fluids 16, 3403.

    Article  Google Scholar 

  • Versluis, M., 2013, High-speed imaging in fluids, Exp. Fluids 54, 1458.

    Article  Google Scholar 

  • Worthington, A.M., 1876, On the forms assumed by drops of liquids falling vertically on a horizontal plate, Proc. R. Soc. London 25, 261–272.

    Article  Google Scholar 

  • Worthington, A.M., 1908, A Study of Splashes, Longmans, Green, and Co., London.

    Google Scholar 

  • Yang, X., V.H. Chhasatia, and Y. Sun, 2013, Oscillation and recoil of single and consecutively printed droplets, Langmuir 29, 2185–2192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Norouzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandani, S., Norouzi, M. & Shahmardan, M.M. An experimental investigation on impact process of Boger drops onto solid surfaces. Korea-Aust. Rheol. J. 30, 99–108 (2018). https://doi.org/10.1007/s13367-018-0011-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-018-0011-0

Keywords

Navigation