Skip to main content
Log in

Abstract

In this paper we construct several arrangements of lines and/or conics that are derived from the geometry of the Klein arrangement of 21 lines in the complex projective plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barakat, M., Kühne, L.: Computing the nonfree locus of the moduli space of arrangements and Terao’s freeness conjecture. Math. Comput. 92, 1431–1452 (2023)

    Article  MathSciNet  Google Scholar 

  • Berardinelli, A., Berman, L.W.: Systematic celestial 4-configurations. Ars Math. Contemp. 7, 361–377 (2014)

    Article  MathSciNet  Google Scholar 

  • Bertini, E.: Le tangenti multiple della Cayleyana di una quartica piana generale. Atti Acad. Sci. Torino 32, 32–33 (1896)

    Google Scholar 

  • Boben, M., Gévay, G., Pisanski, T.: Danzer’s configuration revisited. Adv. Geom. 15, 393–408 (2015)

    Article  MathSciNet  Google Scholar 

  • Bokowski, J., Pokora, P.: On the Sylvester–Gallai and the orchard problem for pseudoline arrangements. Period. Math. Hung. 77(2), 164–174 (2018)

    Article  MathSciNet  Google Scholar 

  • Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1961)

    Google Scholar 

  • Coxeter, H.S.M.: My graph. Proc. Lond. Math. Soc. (3) 46, 117–136 (1983)

    Article  MathSciNet  Google Scholar 

  • Coxeter, H.S.M., Greitzer, S.L.: Geometry Revisited. The Mathematical Association of America, Washington (1967)

    Book  Google Scholar 

  • Cuntz, M.: A greedy algorithm to compute arrangements of lines in the projective plane. Discrete Comput. Geom. 68(1), 107–124 (2022)

    Article  MathSciNet  Google Scholar 

  • Gerbaldi, F.: Sul gruppi di sei coniche in involuzione. Atti Accad. Sci. Torino 17, 566–580 (1882)

    Google Scholar 

  • Gévay, G.: Resolvable configurations. Discrete Appl. Math. 266, 319–330 (2019)

    Article  MathSciNet  Google Scholar 

  • Gévay, G., Pisanski, T.: Kronecker covers, \(V\)-construction, unit-distance graphs and isometric point-circle configurations. Ars Math. Contemp. 7, 317–336 (2014)

    Article  MathSciNet  Google Scholar 

  • Gévay, G., Bašić, N., Kovič, J., Pisanski, T.: Point-ellipse configurations and related topics. Beitr. Algebra Geom. 63, 459–475 (2022)

    Article  MathSciNet  Google Scholar 

  • Grünbaum, B.: Configurations of Points and Lines. American Mathematical Society, Providence (2009)

    Book  Google Scholar 

  • Grünbaum, B., Rigby, J.F.: The real configuration \((21_4)\). J. Lond. Math. Soc. 41, 336–346 (1990)

    Article  Google Scholar 

  • Jeurissen, R.H., van Os, C.H., Steenbrink, J.H.M.: The configuration of bitangents of the Klein curve. Discrete Math. 132(1–3), 83–96 (1994)

    Article  MathSciNet  Google Scholar 

  • Klein, F.: Ueber die Transformationen siebenter Ordnung der elliptischen Funktionen. Math. Ann. 14(3), 428–471 (1878)

    Article  MathSciNet  Google Scholar 

  • Macbeath, A.M.: Hurwitz groups and surfaces. In: Levy, S. (ed.) The Eightfold Way: The Beauty of Klein’s Quartic Curve, MSRI Publicatons, vol. 35. Cambridge University Press, Cambridge (1999)

  • Pisanski, T., Servatius, B.: Configurations from a Graphical Viewpoint, Birkhäuser Advanced Texts. Birkhäuser, New York (2013)

    Book  Google Scholar 

  • Pokora, P., Roé, J.: The 21 reducible polars of Klein’s quartic. Exp. Math. 30, 1–18 (2021)

    Article  MathSciNet  Google Scholar 

  • Roulleau, X.: Conic configurations via dual of quartic curves. Rocky Mt. J. Math. 51(2), 721–732 (2021)

    Article  MathSciNet  Google Scholar 

  • Roulleau, X.: Conic configurations via dual of quartic curves—ancillary file with the Magma computations, https://arxiv.org/src/2002.05681v2/anc/AllMagmaComputations.txt

  • Zacharias, M.: Untersuchungen über ebene Konfigurationen \((12_4, 16_3)\). Deutsche Math. 6, 147–170 (1941)

Download references

Acknowledgements

Both authors would like to thank an anonymous referee for many very useful comments that allowed to improve the paper, and to Lukas Kühne for help with symbolic computations regarding the moduli space of \(\textrm{GR}(21_{4})\). Gábor Gévay was supported by the Hungarian National Research, Development and Innovation Office, OTKA Grant No. SNN 132625. He also expresses his thanks to Leah W. Berman and Tomaž Pisanski for the valuable discussions on Conjecture 2.9. Piotr Pokora was partially supported by the National Science Center (Poland) Sonata Grant Nr 2018/31/D/ST1/00177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Gévay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gévay, G., Pokora, P. Klein’s arrangements of lines and conics. Beitr Algebra Geom 65, 393–414 (2024). https://doi.org/10.1007/s13366-023-00697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-023-00697-9

Keywords

Mathematics Subject Classification

Navigation