Skip to main content
Log in

Abstract

The principle of duality is well established in projective geometry but can hardly be found in the literature on Euclidean geometry where it is “more a principle of analogy than a scientific principle with a logical foundation” (cp. Sommerville, The Elements of Non-Euclidean Geometry. The Open Court, London, 1919). We close this gap and develop a theory of duality in Euclidean geometry. Following Hilbert’s Grundlagen der Geometrie we consider the incidence, order and metric structure of a Euclidean plane and show (a) that there is a large class of theorems of Euclidean incidence geometry which allow a dualization (b) that Hilbert’s order structure can be introduced in a Euclidean plane in a self-dual way and (c) that appropriate definitions of metric notions (e.g., of an angle, a segment or a circle) lead to Euclidean theorems with meaningful dual versions. This shows that duality in Euclidean geometry is not a collection of isolated phenomena but corresponds to a rich and coherent theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As in deVilliers (2009) where mainly fragments of duality are studied and “not a true duality like that in projective geometry”.

  2. For a detailed overview of the axiomatics of ordered geometry we refer to Pambuccian (2011), Prieß-Crampe (1983), Karzel and Kroll (1988) and Lenz (1965).

  3. Or in the axiomatic approach of Hessenberg and Diller (1967) or Thomsen (1933).

  4. We consider in this article only projective planes which can be coordinatized over fields of characteristic \(\ne 2\), i.e., which satisfy the axioms of Pappus and Fano.

  5. If all assumptions \(A_{i}\) are positive literals then (4.1) is the normal form of sentences of ‘geometric theories’ which have the property that a theorem, which can be derived within classical logic, can also be derived within intuitionistic logic (see Pambuccian 2017 for a discussion within the context of a direct proof of the Steiner–Lehmus theorem and Dyckhoff and Negri (2015) for the so-called geometrisation of first-order logic).

  6. Or, equivalently, by ‘If two of the lines ab and c are incident with E then E is incident with all lines ab and c’.

  7. For the axioms and the theory of the relations of betweenness and separation we refer to Prieß-Crampe (1983) (see also Pambuccian 2011). Following the axioms of Prieß-Crampe (1983) we assume that a betweenness (or separation) relation is only defined for distinct elements.

  8. The set of points on a line a is called a row of collinear points. The set of lines through a point A is called a pencil of concurrent lines.

  9. The theorem of Pappus implies the theorem of Desargues (see Coxeter 1961, §14.3).

  10. We refer to Coxeter (1955) for an introduction of these notions in the real projective plane and to Wyler (1953) for a generalization to absolute geometry of any dimension.

  11. i.e., if all flags are conjugated or, equivalently, if any two lines with a common point have a bisector.

  12. In the sense of Definition 4.6.

  13. Lines abc lie in a pencil if \(abc \in S\) (see Bachmann 1973, §3,5).

  14. Which were introduced in Sect. 2; see also Theorem  3.11.

  15. For the notion of a quadratic set of points of a projective plane we refer to Buekenhout (1969) who introduced this notion for a characterization of projective conics.

References

  • Atiyah, M.F.: Duality in Mathematics and Physics. Conferencies FME. University of Barcelona, Barcelona (2008)

    Google Scholar 

  • Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, 2nd edn. Springer, Heidelberg (1973)

    Book  MATH  Google Scholar 

  • Bachmann, F.: Ebene Spiegelungsgeometrie. BI-Verlag, Mannheim (1989)

    MATH  Google Scholar 

  • Behnke, H., Bachmann, F., et al.: Fundamentals of Mathematics, vol. II. Geometry. MIT Press, London (1974)

    Google Scholar 

  • Buekenhout, F.: Ensembles quadratiques des espaces projectifs. Math. Z. 110, 306–318 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Coxeter, H.S.M.: The Real Projective Plane. Cambridge University Press, London (1955)

    MATH  Google Scholar 

  • Coxeter, H.S.M.: Introduction to Geometry. Wiley, London (1961)

    MATH  Google Scholar 

  • de Villiers, M.: Some adventures in Euclidean geometry. Dynamic Mathematics Learning (2009)

  • Dyckhoff, R., Negri, S.: Geometrisation of first-order logic. Bull. Symb. Logic 21, 123–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Ewald, G.: Geometry: An Introduction. ISHI, New York (2013)

    MATH  Google Scholar 

  • Hallett, M., Majer, U. (eds.): David Hilbert’s Lectures on the Foundations of Geometry, pp. 1891–1902. Springer, Berlin (2004)

  • Hartshorne, R.: Geometry: Euclid and Beyond. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  • Hessenberg, G., Diller, J.: Grundlagen der Geometrie. de Gruyter, Berlin (1967)

    MATH  Google Scholar 

  • Hilbert, D.: Grundlagen der Geometrie, 11th edn. Teubner, Stuttgart (1972)

    MATH  Google Scholar 

  • Hjelmslev, J.: Neue Begründung der ebenen Geometrie. Math. Ann. 64, 449–474 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  • Hjelmslev, J.: Danske Vid. Selsk. Mat-fys. Medd. 8(11) (1929a); 10(1) (1929b); 19(12) (1942); 22(6, 13) (1945); 25(10) (1949)

  • Karzel, H., Kroll, H.-J.: Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt (1988)

    MATH  Google Scholar 

  • Lenz, H.: Vorlesungen über projektive Geometrie. Akademische Verlagsgesellschaft, Leipzig (1965)

    MATH  Google Scholar 

  • Lingenberg, R.: Grundlagen der Geometrie, 2nd edn. BI-Verlag, Wien (1976)

    MATH  Google Scholar 

  • Pambuccian, V.: The axiomatics of ordered geometry. I. Ordered incidence spaces. Expo. Math. 29, 24–66 (2011)

    MathSciNet  MATH  Google Scholar 

  • Pambuccian, V.: Negation-free and contradiction-free proof of the Steiner–Lehmus theorem. Notre Dame J. Formal Logic (2017). https://doi.org/10.1215/00294527-2017-0019

  • Prieß-Crampe, S.: Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  • Sommerville, D.M.Y.: The Elements of Non-Euclidean Geometry. The Open Court, London (1919)

    MATH  Google Scholar 

  • Sperner, E.: Die Ordnungsfunktion einer Geometrie. Math. Ann. 121, 107–130 (1949)

    Google Scholar 

  • Struve, H., Struve, R.: Zum Begriff der projektiv-metrischen Ebene. Z. Math. Logik Grundlagen Math. 34, 79–88 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Struve, H., Struve, R.: An axiomatic analysis of the Droz–Farny line theorem. Aequat. Math. 90, 1201–1218 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Struve, R.: An axiomatic foundation of Cayley–Klein geometries. J. Geom. 107, 225–248 (2016a)

  • Struve, R.: The principle of duality in Euclidean and in absolute geometry. J. Geom. 107, 707–717 (2016b)

  • Thomsen, G.: Grundlagen der Elemenatargeometrie in gruppenalgebraischer Behandlung. Hambg. Math. Einzelschriften 15 (1933)

  • Wyler, O.: Order in projective and in descriptive geometry. Compos. Math. 11, 60–70 (1953)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Struve.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struve, R. A theory of duality in Euclidean geometry. Beitr Algebra Geom 59, 221–246 (2018). https://doi.org/10.1007/s13366-017-0370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-017-0370-6

Keywords

Mathematics Subject Classification

Navigation