A theory of duality in Euclidean geometry

Original Paper


The principle of duality is well established in projective geometry but can hardly be found in the literature on Euclidean geometry where it is “more a principle of analogy than a scientific principle with a logical foundation” (cp. Sommerville, The Elements of Non-Euclidean Geometry. The Open Court, London, 1919). We close this gap and develop a theory of duality in Euclidean geometry. Following Hilbert’s Grundlagen der Geometrie we consider the incidence, order and metric structure of a Euclidean plane and show (a) that there is a large class of theorems of Euclidean incidence geometry which allow a dualization (b) that Hilbert’s order structure can be introduced in a Euclidean plane in a self-dual way and (c) that appropriate definitions of metric notions (e.g., of an angle, a segment or a circle) lead to Euclidean theorems with meaningful dual versions. This shows that duality in Euclidean geometry is not a collection of isolated phenomena but corresponds to a rich and coherent theory.


Euclidean geometry Principle of duality Self-dual order structure Circle geometry 

Mathematics Subject Classification

51M05 03B30 51F15 51G05 


  1. Atiyah, M.F.: Duality in Mathematics and Physics. Conferencies FME. University of Barcelona, Barcelona (2008)Google Scholar
  2. Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, 2nd edn. Springer, Heidelberg (1973)CrossRefMATHGoogle Scholar
  3. Bachmann, F.: Ebene Spiegelungsgeometrie. BI-Verlag, Mannheim (1989)MATHGoogle Scholar
  4. Behnke, H., Bachmann, F., et al.: Fundamentals of Mathematics, vol. II. Geometry. MIT Press, London (1974)Google Scholar
  5. Buekenhout, F.: Ensembles quadratiques des espaces projectifs. Math. Z. 110, 306–318 (1969)MathSciNetCrossRefMATHGoogle Scholar
  6. Coxeter, H.S.M.: The Real Projective Plane. Cambridge University Press, London (1955)MATHGoogle Scholar
  7. Coxeter, H.S.M.: Introduction to Geometry. Wiley, London (1961)MATHGoogle Scholar
  8. de Villiers, M.: Some adventures in Euclidean geometry. Dynamic Mathematics Learning (2009)Google Scholar
  9. Dyckhoff, R., Negri, S.: Geometrisation of first-order logic. Bull. Symb. Logic 21, 123–163 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. Ewald, G.: Geometry: An Introduction. ISHI, New York (2013)MATHGoogle Scholar
  11. Hallett, M., Majer, U. (eds.): David Hilbert’s Lectures on the Foundations of Geometry, pp. 1891–1902. Springer, Berlin (2004)Google Scholar
  12. Hartshorne, R.: Geometry: Euclid and Beyond. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  13. Hessenberg, G., Diller, J.: Grundlagen der Geometrie. de Gruyter, Berlin (1967)MATHGoogle Scholar
  14. Hilbert, D.: Grundlagen der Geometrie, 11th edn. Teubner, Stuttgart (1972)MATHGoogle Scholar
  15. Hjelmslev, J.: Neue Begründung der ebenen Geometrie. Math. Ann. 64, 449–474 (1907)MathSciNetCrossRefMATHGoogle Scholar
  16. Hjelmslev, J.: Danske Vid. Selsk. Mat-fys. Medd. 8(11) (1929a); 10(1) (1929b); 19(12) (1942); 22(6, 13) (1945); 25(10) (1949)Google Scholar
  17. Karzel, H., Kroll, H.-J.: Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt (1988)MATHGoogle Scholar
  18. Lenz, H.: Vorlesungen über projektive Geometrie. Akademische Verlagsgesellschaft, Leipzig (1965)MATHGoogle Scholar
  19. Lingenberg, R.: Grundlagen der Geometrie, 2nd edn. BI-Verlag, Wien (1976)MATHGoogle Scholar
  20. Pambuccian, V.: The axiomatics of ordered geometry. I. Ordered incidence spaces. Expo. Math. 29, 24–66 (2011)MathSciNetMATHGoogle Scholar
  21. Pambuccian, V.: Negation-free and contradiction-free proof of the Steiner–Lehmus theorem. Notre Dame J. Formal Logic (2017).  https://doi.org/10.1215/00294527-2017-0019
  22. Prieß-Crampe, S.: Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen. Springer, Berlin (1983)CrossRefMATHGoogle Scholar
  23. Sommerville, D.M.Y.: The Elements of Non-Euclidean Geometry. The Open Court, London (1919)MATHGoogle Scholar
  24. Sperner, E.: Die Ordnungsfunktion einer Geometrie. Math. Ann. 121, 107–130 (1949)Google Scholar
  25. Struve, H., Struve, R.: Zum Begriff der projektiv-metrischen Ebene. Z. Math. Logik Grundlagen Math. 34, 79–88 (1988)MathSciNetCrossRefMATHGoogle Scholar
  26. Struve, H., Struve, R.: An axiomatic analysis of the Droz–Farny line theorem. Aequat. Math. 90, 1201–1218 (2016)MathSciNetCrossRefMATHGoogle Scholar
  27. Struve, R.: An axiomatic foundation of Cayley–Klein geometries. J. Geom. 107, 225–248 (2016a)Google Scholar
  28. Struve, R.: The principle of duality in Euclidean and in absolute geometry. J. Geom. 107, 707–717 (2016b)Google Scholar
  29. Thomsen, G.: Grundlagen der Elemenatargeometrie in gruppenalgebraischer Behandlung. Hambg. Math. Einzelschriften 15 (1933)Google Scholar
  30. Wyler, O.: Order in projective and in descriptive geometry. Compos. Math. 11, 60–70 (1953)MathSciNetMATHGoogle Scholar

Copyright information

© The Managing Editors 2017

Authors and Affiliations

  1. 1.BochumGermany

Personalised recommendations