Skip to main content
Log in

Conformal geometry of marginally trapped surfaces in \(\mathbb {S}^4_1\)

  • Original Paper
  • Published:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry Aims and scope Submit manuscript

Abstract

A spacelike surface S immersed in \(\mathbb {S}^4_1\) is marginally trapped if its mean curvature vector is everywhere lightlike. On any oriented spacelike surface S immersed in \(\mathbb {S}^4_1\) we show that a choice of orientation of the normal bundle \(\nu (S)\) determines a smooth map \(G: S \rightarrow \mathbb {S}^3\) which we call the null Gauss map of S. If S is marginally trapped we show that G is a conformal immersion away from the zeros of certain quadratic Hopf-differential of S and so the surface G(S) is uniquely determined up to conformal transformations of \(\mathbb {S}^3\) by two invariants: the normal Hopf differential \(\kappa \) and the schwartzian derivative s. These invariants plus an additional quadratic differential \(\delta \) are related by a differential equation and determine the geometry of S up to ambient isometries of \(\mathbb {S}^4_1\). This allows us to obtain a characterization of marginally trapped surfaces S whose null Gauss image is a constrained Willmore surface in \(\mathbb {S}^3\) in the sense of Bohle et al. (Calc Var Partial Differ Equ 32:263–277, 2008). As an application of these results we construct and study integrable non-trivial one-parameter deformations of marginally trapped surfaces with non-zero parallel mean curvature vector and those with flat normal bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aledo, J.A., Galvez, J.A., Mira, P.: Marginally trapped surfaces in \(L^4\) and an extended Weierstrass–Bryant representation. Ann. Glob. Anal. Geom. 28(4), 395–415 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Anciaux, H.: Marginally trapped submanifolds in space forms with arbitrary signature. Pac. J. Math. 272(2), 257–274 (2014)

  • Anciaux, H., Godoy, Y.: Marginally trapped submanifolds in lorentzian space forms and in the lorentzian product of a space form by the real line. J. Math. Phys. 56(2), 023502 (2015)

  • Bobenko, A.I.: All constant mean curvature tori in \(R^3\), \(S^3\), \(H^3\) in terms of theta-functions. Math. Ann. 290(2), 209–245 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Bohle, C., Peters, G.P., Pinkall, U.: Constrained Willmore surfaces. Calc. Var. Partial Differ. Equ. 32, 263–277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Blaschke, W.: Vorlesungen ueber Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitaetstheorie, B. 3, bearbeitet von G. Thomsen J. Springer, Berlin (1929)

    Book  MATH  Google Scholar 

  • Bryant, R.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–53 (1984)

    MathSciNet  MATH  Google Scholar 

  • Burstall, F.E., Pedit, F.: Dressing orbits of harmonic maps. Duke Math. J. 80, 353–382 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Burstall, F.E., Pedit, F., Pinkall, U.: Schwarzian derivatives and flows of surfaces, Contemporary Mathematics 308, 3961. Amer. Math. Soc, Providence, RI (2002)

  • Calderbank, D.M.J.: Moebius structures and two dimensional Einstein–Weyl geometry. J. Reine Angew Math. 504, 37–53 (1998)

    MathSciNet  MATH  Google Scholar 

  • Chen, B.Y., Van der Veken, J.: Classification of marginally trapped surfaces with parallel mean curvature in Lorentzian space forms. Houston J. Math. 36(2), 421–449 (2010)

    MathSciNet  MATH  Google Scholar 

  • Chen, B.Y.: Black holes, marginally trapped surfaces and quasi-minimal surfaces. Tamkang J. Math. 40(4), 313–341 (2009)

    MathSciNet  MATH  Google Scholar 

  • Cabrerizo, J.L., Fernández, M., Gómez, J.S.: Isotropy and marginally trapped surfaces in a spacetime. Class Quantum Gravity 27, 135005 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Ejiri, N.: Willmore surfaces with a duality in \(S^N(1)\). Proc. Lond. Math. Soc. 52(2), 383–416 (1988)

  • Elghanmi, R.: Spacelike surfaces in Lorentzian manifolds. Differ. Geom. Appl. 6, 199–218 (1996). (North-Holland)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferus, D., Pedit, F.: Isometric immersions of space forms and soliton theory. Math. Ann. 305(2), 329–342 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Ganchev, G., Milousheva, V.: An invariant theory of marginally trapped surfaces in the four-dimensional Minkowski space. J. Math. Phys. 53, 033705 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Hulett, E.: Superconformal harmonic surfaces in de Sitter space-times. J. Geom. Phys. 55(2), 179–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Hertrich Jeromin, U.: Introduction to Möebius differential geometry. London Mathematical Society Lecture Note Series vol. 300. Cambridge University Press, Cambridge (2003). (ISBN 0-521-53569-7)

  • Liu, H.: Weierstrass type representation for marginally trapped surfaces in Minkowski 4-space. Math. Phys. Anal. Geom. 16, 171–178 (2013). doi:10.1007/s11040-012-9125-7

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, X.: Willmore surfaces in \(S^n\), Transforms and vanishing theorems. Ph.D. Thesis, TU-Berlin (2005)

  • Palmer, B.: The conformal Gauss map and the stability of Willmore surfaces. Ann. Glob. Anal. Geom. 9(3), 305–317 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Richter, J.: Conformal maps of a Riemannian surface onto the space of quaternions. PhD thesis, TU-Berlin (1997)

  • Ruh, E., Vilms, J.: The tension field of the Gauss map. Trans. Am. Math. Soc. 149, 569–573 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol IV, 3rd edn. Publish or perish (1999)

  • Wang, P.: Generalized polar transforms of spacelike isothermic surfaces. J. Geom. Phys. 62(2), 403–411 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Hulett.

Additional information

Partially supported by research Grants from CONICET, SECYT-UNC and FONCyT Argentina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulett, E. Conformal geometry of marginally trapped surfaces in \(\mathbb {S}^4_1\) . Beitr Algebra Geom 58, 131–166 (2017). https://doi.org/10.1007/s13366-016-0314-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-016-0314-6

Keywords

Mathematics Subject Classification

Navigation