Skip to main content
Log in

Temporal coexistence in a carnivore assemblage from central Mexico: temporal-domain dependence

  • Original Paper
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

Species coexistence at a given locality generally implies segregation along one of the three resource dimensions of the ecological niche: spatial, trophic or temporal. Temporal activity patterns of species are ecologically important as they expose how species exploit their environments. Using camera traps, we evaluated the temporal activity patterns and temporal overlap for a mammalian carnivore assemblage from Sierra Nanchititla Natural Park, central Mexico. We characterized and compared temporal activity patterns and temporal overlap between species pairs using circular statistics. Temporal overlap was analyzed using three temporal domains (full diel, diurnal, and nocturnal), and null models were used to contrast the empirical assemblage-wide temporal overlap in relation to randomly generated distributions. We found that pair-wise temporal overlap comparisons among species were quite heterogeneous and dependent on the temporal domain used for the analyses. Two major inferences can be derived from pair-wise analyses and the null model: (a) most of the carnivore assemblage show a nocturnal activity pattern in common and (b) most of the pair-wise comparisons indicate temporal segregation among species. The highest temporal overlap at the assemblage-wide level was found when only the nocturnal domain was evaluated and we found coincident temporal activities at the full domain level, independent of the temporal resolution used. Overall, our results suggest that carnivores with distinct trophic and habitat use like the margay (Leopardus wiedii) and gray fox (Urocyon cinereoargenteus) had temporal overlapping activity patterns to full diel and nocturnal domains, and species with similar trophic and habitat use always presented temporal segregation (gray fox and white-nosed coati, Nasua narica). Finally, species with predator-prey relationships (white-nosed coati and cougar, Puma concolor) showed segregation during the day but overlap at night. Our results indicate that species temporal activity patterns likely change in relation to different interspecific interactions such as predation and competition to allow species coexistence within this carnivore assemblage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bennie JJ, Duffy JP, Inger R, Gaston KJ (2014) Biogeography of time partitioning in mammals. Proc Natl Acad Sci U S A 111:13727–13732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carothers JH, Jaksic FM (1984) Time as a niche difference: the role of interference competition. Oikos 42:403–406

    Article  Google Scholar 

  • Castro-Arellano I, Lacher TE (2009) Temporal niche segregation in two rodent assemblages of subtropical Mexico. J Trop Ecol 25:593–603

    Article  Google Scholar 

  • Castro-Arellano I, Lacher TE, Willig MR, Rangel TF (2010) Assessment of assemblage-wide temporal niche segregation using null models. Methods Ecol Evol 1:311–318

    Google Scholar 

  • Davies TJ, Meiri S, Barraclough TG, Gittleman JL (2007) Species co-existence and character divergence across carnivores. Ecol Lett 10:146–152

    Article  PubMed  Google Scholar 

  • Davis ML, Kelly MJ, Stauffer DF (2011) Carnivore co-existence and habitat use in the mountain pine ridge Forest reserve, Belize. Anim Conserv 14:56–65

    Article  Google Scholar 

  • De Almeida AT, Silveira L, Diniz-Filho JAF (2004) Niche separation between the maned wolf (Chrysocyon brachyurus), the crab-eating fox (Dusicyon thous) and the hoary fox (Dusicyon vetulus) in Central Brazil. J Zool (London) 262:99–106

    Article  Google Scholar 

  • Di Bitetti MS, Di Blanco YE, Pereira JA, Paviolo A, Jiménez I (2009) Time partitioning favors the coexistence of sympatric crab-eating foxes (Cerdocyon thous) and pampas foxes (Lycalopex gymnocercus). J Mammal 90:479–490

    Article  Google Scholar 

  • Di Bitetti MS, De Angelo CD, Di Blanco YE, Paviolo A (2010) Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecol 36:403–412

    Article  Google Scholar 

  • Donadio E, Buskirk SW (2006) Diet, morphology, and interspecific killing in carnivora. Am Nat 167:524–536

    Article  PubMed  Google Scholar 

  • Farías V, Fuller TK, Sauvajot RM (2012) Activity and distribution of gray foxes (Urocyon cinereoargenteus) in Southern California. Southwest Nat 57:176–181

    Article  Google Scholar 

  • Feisinger P, Spears EE, Poole RW (1981) A simple measure of niche breadth. Ecology 62:27–32

    Article  Google Scholar 

  • Gómez H, Wallace RB, Ayala G, Tejada R (2005) Dry season activity periods of some Amazonian mammals. Stud Neotropical Fauna Environ 40:91–95

    Article  Google Scholar 

  • Gómez-Ortiz Y, Monroy-Vilchis O (2013) Feeding ecology of puma Puma concolor in Mexican montane forests with comments about jaguar Panthera onca. Wildl Biol 19:179–187

    Article  Google Scholar 

  • Gómez-Ortiz Y, Monroy-Vilchis O, Fajardo V, Mendoza GD, Urios V (2011) Is food quality important for carnivores? The case of Puma concolor. Anim Biol 61:277–288

    Article  Google Scholar 

  • Gómez-Ortiz Y, Monroy-Vilchis O, Mendoza GD (2015) Feeding interactions in an assemblage of terrestrial carnivores in Central Mexico. Zool Stud 54:1–8

    Article  Google Scholar 

  • González G, Sánchez V, Íñiguez L, Santana E, Fuller T (1992) Activity patterns of coyote (Canis latrans), grey fox (Urocyon cinereoargenteus) and opossum (Didelphis virginiana) in Serra of Manantlán, Jalisco. An Inst Biol Univ Nac Auton Mex Ser Zool 63:293–299

    Google Scholar 

  • Gotelli NJ, Hart EM, Ellison AM (2015) EcoSimR: null model analysis for ecological data. Zenodo. https://doi.org/10.5281/zenodo.16636

  • Harmsen BJ, Foster RJ, Silver SC, Ostro LET, Doncaster CP (2009) Spatial and temporal interactions of sympatric jaguars (Panthera onca) and pumas (Puma concolor) in a Neotropical forest. J Mammal 90:612–620

    Article  Google Scholar 

  • Hayward MW, Slotow R (2009) Temporal partitioning of activity in large African carnivores: tests of multiple hypotheses. S Afr J Wildl Res 39:109–125

    Article  Google Scholar 

  • Hulbert SH, Lombardi CM (2003) Design and analysis: uncertain intent, uncertain result. Ecology 84:810–812

    Article  Google Scholar 

  • Hunter J, Caro T (2008) Interspecific competition and predation in American carnivore families. Ethol Ecol Evol 20:295–324

    Article  Google Scholar 

  • Kronfeld-Schor N, Dayan T (2003) Partitioning of time as an ecological resource. Ann Rev Ecol Evol Syst 34:153–181

    Article  Google Scholar 

  • Linnell JCD, Strand O (2000) Interference interactions, co-existence and conservation of mammalian carnivores. Divers Distrib 6:169–176

    Article  Google Scholar 

  • Lira-Torres I, Briones-Salas M (2012) Relative abundance and activity patterns of mammals at Chimalapa’s forest, Oaxaca, Mexico. Acta Zool Mex 28:566–585

    Google Scholar 

  • Loreau M (1989) On testing temporal niche differentiation in carabid beetles. Oecologia 81:89–96

    Article  CAS  PubMed  Google Scholar 

  • Lucherini M, Reppucci J, Walker RS, Villalba M, Wurstten A, Gallardo G, Iriarte A, Villalobos R, Perovic P (2009) Activity pattern segregation of carnivores in the high Andes. J Mammal 90:1404–1409

    Article  Google Scholar 

  • Monroy-Vilchis O, Zarco-González M, Rodríguez-Soto C, Suárez P, Urios V (2008) Uso tradicional de vertebrados silvestres en la Sierra Nanchititla, México. Interciencia 33:308–313

    Google Scholar 

  • Monroy-Vilchis O, Gómez Y, Janczur M, Urios V (2009) Food niche of Puma concolor in Central Mexico. Wildl Biol 15:97–105

    Article  Google Scholar 

  • Monroy-Vilchis O, Zarco-González M, Rodríguez-Soto C, Soria-Díaz L, Urios V (2011) Mammals’ camera-trapping in Sierra Nanchititla, Mexico: relative abundance and activity patterns. Rev Biol Trop 59:373–383

    PubMed  Google Scholar 

  • Morgan E (2004) Ecological significance of biological clocks. Biol Rhythm Res 35:3–12

    Article  Google Scholar 

  • Núñez R, Miller B, Lindzey F (2000) Food habits of jaguars and pumas in Jalisco, Mexico. J Zool 52:373–379

    Article  Google Scholar 

  • Oliveira-Santos LG, Graipel ME, Tortato MA, Zucco CA, Cáceres NC, Goulart FV (2012) Abundance changes and activity flexibility of the oncilla, Leopardus tigrinus (Carnivora: Felidae), appear to reflect avoidance of conflict. Zoologia 29:115–120

    Google Scholar 

  • Oliveira-Santos LGR, Zucco CA, Agostinelli C (2013) Using conditional circular kernel density functions to test hypotheses on animal circadian activity. Anim Behav 85:269–280

    Article  Google Scholar 

  • Patterson BR, Bondrup-Nielsen S, Messier F (1999) Activity patterns and daily movements of the eastern coyote, Canis latrans, in Nova Scotia. Can Field Nat 113:251–257

    Google Scholar 

  • Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Syst 4:53–74

    Article  Google Scholar 

  • Ramesh T, Kalle R, Sankar K, Qureshi Q (2012) Dietary partitioning in sympatric large carnivores in a tropical forest of Western Ghats, India. Mamm Study 37:313–321

    Article  Google Scholar 

  • Ramesh T, Kalle R, Sankar K, Qureshi Q (2015) Role of body size in activity budgets of mammals in the Western Ghats of India. J Trop Ecol 31:315–323

    Article  Google Scholar 

  • Roback PJ, Askins RA (2005) Judicious use of multiple hypothesis tests. Conserv Biol 19:261–267

    Article  Google Scholar 

  • Roemer GW, Gompper ME, Valkenburgh BV (2009) The ecological role of the mammalian mesocarnivores. BioScience 59:165–173

    Article  Google Scholar 

  • Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39

    Article  CAS  PubMed  Google Scholar 

  • Schoener TW (1983) Field experiments on interspecific competition. Am Nat 122:240–285

    Article  Google Scholar 

  • Scognamillo D, Maxit I, Sunquist M, Polisar J (2003) Coexistence of jaguar (Panthera onca) and puma (Puma concolor) in a mosaic landscape in the Venezuelan llanos. J Zool (London) 259:269–279

    Article  Google Scholar 

  • Soria-Díaz L, Monroy-Vilchis O, Rodríguez-Soto C, Zarco-González MM, Urios V (2010) Variation of abundance and density of Puma concolor in zones of high and low concentration of camera traps in central Mexico. Anim Biol 60:361–371

    Article  Google Scholar 

  • Suselbeek L, Emsens WJ, Hirsch BT, Kays R, Rowcliffe JM, Zamora-Gutierrez V, Jansen PA (2014) Food acquisition and predator avoidance in Neotropical rodent. Anim Behav 88:41–48

    Article  Google Scholar 

  • Taber A, Novaro A, Neris N, Colman F (1997) The food habits of sympatric jaguar and puma in the Paraguayan Chaco. Biotropica 29:204–213

    Article  Google Scholar 

  • Terborgh J, Lopez L, Nuñez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD, Balbas L (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926

    Article  CAS  PubMed  Google Scholar 

  • Tokeshi M (1986) Resource utilization, overlap and temporal community dynamics: a null model analysis of an epiphytic chironomid community. J Anim Ecol 55:491–506

    Article  Google Scholar 

  • Valenzuela D, Ceballos G (2000) Habitat selection, home range, and activity of the white-nosed coati (Nasua narica) in a Mexican tropical dry forest. J Mammal 81:810–819

    Article  Google Scholar 

  • Vanderhoff EN, Hodge A, Arbogast BS, Nilsson J, Knowles WT (2011) Abundance and activity patterns of the margay (Leopardus wiedii) at a mid-elevation site in the eastern Andes of Ecuador. Mastozool Neotrop 18:271–279

    Google Scholar 

  • Winemiller KO, Pianka ER (1990) Organization in natural assemblages of desert lizards and tropical fishes. Ecol Monogr 60:27–55

    Article  Google Scholar 

  • Zar JH (1999) Bioestatistical analysis. Prentice Hall, New Jersey 662p

    Google Scholar 

Download references

Acknowledgements

We thank all students that helped as volunteer field assistants and to the rangers of Sierra Nanchititla Biological Station and CEPANAF for their support in field. We also thank to Dr. Joseph Veech for reviewing the English grammar of the first version of our draft. The comments from one anonymous reviewer and the detailed help of the editor enhanced the clarity of the final version of this manuscript.

Funding

This work was supported by CONACYT (project #105254 and the scholarship #255868 for graduate studies of Gómez-Ortiz Y.) and PROMEP (project #103.5/10/0942).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriana Gómez-Ortiz.

Additional information

Communicated by: Quinn Fletcher

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Ortiz, Y., Monroy-Vilchis, O. & Castro-Arellano, I. Temporal coexistence in a carnivore assemblage from central Mexico: temporal-domain dependence. Mamm Res 64, 333–342 (2019). https://doi.org/10.1007/s13364-019-00415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-019-00415-8

Keywords

Navigation