Skip to main content

Advertisement

Log in

In vitro evaluation of biofilm phenotypic and genotypic characteristics among clinical isolates of Pseudomonas aeruginosa in Hamadan, West of Iran

  • Microbial Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Due to high antimicrobial resistance and biofilm-forming ability, Pseudomonas aeruginosa is one of the seriously life-threatening agents causing chronic and nosocomial infections. This study was performed to determine the antibiotic resistance pattern, biofilm formation, and frequency of biofilm-related genes in P. aeruginosa strains. In total, 123 P. aeruginosa isolates were collected from different clinical sources. Antimicrobial susceptibility testing (AST) was performed to detect multidrug-resistant P. aeruginosa (MDRPA) isolates. To evaluate the biofilm-forming isolates, the microtiter plate (MTP) method was carried out. Also, the prevalence of biofilm genotype patterns, including pslA, pslD, pelA, pelF, and algD genes, was detected by polymerases chain reaction (PCR). According to our findings, the highest resistance and susceptibility rates were found in ceftazidime with 74.7% (n = 92) and ciprofloxacin with 42.2% (n = 52), respectively. In our study, the highest level of antibiotic resistance belonged to wound isolates which meropenem had the most antibacterial activity against them. In total, 86.1% (n = 106) P. aeruginosa isolates were determined as MDRPA, of which 61.3% (n = 65) were able to form strong biofilm. The highest and lowest frequency of biofilm-related genes among biofilm producer isolates belonged to pelF with 82.1% (n = 101) and algD with 55.2% (n = 68), respectively. The findings of the conducted study indicate a significant relationship between MDRPA and biofilm genotypic/phenotypic patterns, suggesting the necessity of a careful surveillance program in hospital settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Due to the nature of this research, participants of this study did not agree for their data to be shared publicly, so supporting data is not available.

References

  • Abidi SH, Sherwani SK, Siddiqui TR, Bashir A, Kazmi SU (2013) Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol 13(1):1–6

    Article  Google Scholar 

  • Adwan G, Omar G (2021) Phenotypic and molecular characterization of fluoroquinolone resistant Pseudomonas aeruginosa isolates in Palestine. Braz J Biol 28(82):e239868

  • Almzil NR, Yazgan YK, Al Marjani MF (2022) Evaluation of biofilm formation in pseudomonas aeruginosa isolated from clinical samples and the presence of biofilm-related genes (pelA, pslD AND algD). European Journal of Molecular & Clinical Medicine 9(07):2022

  • Alnabelseya N (2014) Structural and functional characterization of the multi-domain protein pela: implications for biofilm formation by Pseudomonas aeruginosa. Thesis University of Toronto

  • Al-Sheikhly MA, Musleh LN, Al-Mathkhury HJ (2020) Gene expression of pelA and pslA in Pseudomonas aeruginosa under gentamicin stress. Iraqi journal of Science 27:295–305

  • Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH et al (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP et al (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob Agents Chemother 48(4):1175–1187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bakht M, Alizadeh SA, Rahimi S, Kazemzadeh Anari R, Rostamani M, Javadi A et al (2022) Phenotype and genetic determination of resistance to common disinfectants among biofilm-producing and non-producing Pseudomonas aeruginosa strains from clinical specimens in Iran. BMC Microbiol 22(1):1–16

    Article  Google Scholar 

  • Balíková K, Vojtková H, Duborská E, Kim H, Matúš P, Urík M (2022) Role of exopolysaccharides of Pseudomonas in heavy metal removal and other remediation strategies. Polymers 14(20):4253

    Article  PubMed  PubMed Central  Google Scholar 

  • Banar M, Emaneini M, Satarzadeh M, Abdellahi N, Beigverdi R, Leeuwen WBV et al (2016) Evaluation of mannosidase and trypsin enzymes effects on biofilm production of Pseudomonas aeruginosa isolated from burn wound infections. J PloS one 11(10):e0164622

    Article  Google Scholar 

  • Behzadi P, Gajdács M, Pallós P, Ónodi B, Stájer A, Matusovits D et al (2022) Relationship between biofilm-formation, phenotypic virulence factors and antibiotic resistance in environmental Pseudomonas aeruginosa. Pathogens. 11(9):1015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brzozowski M, Krukowska Ż, Galant K, Jursa-Kulesza J, Kosik-Bogacka D (2020) Genotypic characterisation and antimicrobial resistance of Pseudomonas aeruginosa strains isolated from patients of different hospitals and medical centres in Poland. BMC Infect Dis 20(1):1–9

    Article  Google Scholar 

  • CLSI (2021) Performance Standards for Antimicrobial Susceptibility Testing, 31st ed. CLSI supplement M100. Clinical and Laboratory Standards Institute

  • Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GC et al (2011) The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7(1):e1001264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C et al (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14(8):1913–1928

    Article  PubMed  CAS  Google Scholar 

  • Corehtash ZG, Khorshidi A, Firoozeh F, Akbari H, Aznaveh AM (2015) Biofilm formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur journal of microbiology 8(10)

  • Djordjevic ZM, Folic MM, Jankovic SM (2017) Distribution and antibiotic susceptibility of pathogens isolated from adults with hospital-acquired and ventilator-associated pneumonia in intensive care unit. J Infect Public Health 10(6):740–744

    Article  PubMed  Google Scholar 

  • Farhan SM, Ibrahim RA, Mahran KM, Hetta HF, Abd El-Baky RM (2019) Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt. Infect Drug Resist 12:2125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gajdács M, Baráth Z, Kárpáti K, Szabó D, Usai D, Zanetti S et al (2021) No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics. 10(9):1134

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghadaksaz A, Fooladi AAI, Hosseini HM, Amin M (2015) The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. J Appl Biomed 13(1):61–68

    Article  Google Scholar 

  • Ghafoor A, Jordens Z, Rehm BH (2013) Role of PelF in pel polysaccharide biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol 79(9):2968–2978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heidari R, Farajzadeh Sheikh A, Hashemzadeh M, Farshadzadeh Z, Salmanzadeh S, Saki M (2022) Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran. Mol Biol Rep 49(5):3811–3822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hemmati J, Zamanzad B, Gholipour A, Rezaei M-H (2019) Frequency of class I and II integrons in the clinical isolates of Pseudomonas aeruginosa with multidrug resistance in Shahrekord teaching hospitals and Isfahan Shahid Chamran hospital during 2016-2017. J Shahrekord Univ Med Sci 21(5):215–220

    Article  Google Scholar 

  • Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M et al (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183(18):5395–5401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332

    Article  PubMed  Google Scholar 

  • Litwin A, Rojek S, Gozdzik W, Duszynska W (2021) Pseudomonas aeruginosa device associated–healthcare associated infections and its multidrug resistance at intensive care unit of University Hospital: polish, 8.5-year, prospective, single-centre study. BMC Infect Dis 21:1–8

    Article  Google Scholar 

  • Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5(3):e1000354

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma LZ, Wang D, Liu Y, Zhang Z, Wozniak DJ (2022) Regulation of biofilm exopolysaccharide biosynthesis and degradation in Pseudomonas aeruginosa. Annu Rev Microbiol 8(76):413–33

  • Magalhães MJTL, Pontes G, Serra PT, Balieiro A, Castro D, Pieri FA et al (2016) Multidrug resistant Pseudomonas aeruginosa survey in a stream receiving effluents from ineffective wastewater hospital plants. BMC Microbiol 16(1):1–8

    Article  Google Scholar 

  • Mahmoud MF, Fathy FM, Gohar MK, Soliman MH (2021) Biofilm formation and quorum sensing lasRGene of Pseudomonas Aeruginosa isolated from patients with post-operative wound infections. Eur J Mol Clin Med 8(2):2177–2189

    Google Scholar 

  • Marmont LS, Whitfield GB, Rich JD, Yip P, Giesbrecht LB, Stremick CA et al (2017) PelA and PelB proteins form a modification and secretion complex essential for Pel polysaccharide-dependent biofilm formation in Pseudomonas aeruginosa. J Biol Chem 292(47):19411–19422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Momenijavid M, Salimizand H, Korani A, Dianat O, Nouri B, Ramazanzadeh R et al (2022) Effect of calcium hydroxide on morphology and physicochemical properties of Enterococcus faecalis biofilm. Sci Rep 12(1):7595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moradali MF, Ghods S, Rehm BH (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Motbainor H, Bereded F, Mulu W (2020) Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: a cross-sectional study. BMC Infect Dis 20:1–11

    Article  Google Scholar 

  • Nasirmoghadas P, Yadegari S, Moghim S, Esfahani BN, Fazeli H, Poursina F, Hosseininassab SA, Safaei HG (2018) Evaluation of biofilm formation and frequency of multidrug-resistant and extended drug-resistant strain in Pseudomonas aeruginosa isolated from burn patients in Isfahan. Adv Biol Res, p 7

  • Pachori P, Gothalwal R, Gandhi P, diseases. (2019) Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes & Disease. 6(2):109–119

    Article  Google Scholar 

  • Park Y, Koo SH (2022) Epidemiology, molecular characteristics, and virulence factors of carbapenem-resistant Pseudomonas aeruginosa isolated from patients with urinary tract infections. Infect Drug Resist:141–151

  • Percival S (2017) Importance of biofilm formation in surgical infection. J Br Surg 104(2):e85–e94

    Article  CAS  Google Scholar 

  • Pérez A, Gato E, Pérez-Llarena J, Fernández-Cuenca F, Gude MJ, Oviaño M et al (2019) High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother 74(5):1244–1252

    Article  PubMed  Google Scholar 

  • Rajabi H, Salimizand H, Khodabandehloo M, Fayyazi A, Ramazanzadeh R (2022) Prevalence of algD, pslD, pelF, Ppgl, and PAPI-1 Genes involved in biofilm formation in clinical Pseudomonas aeruginosa strains. Biomed Res Int 24;52022

  • Rajaei S, Kazemi-Pour N, Rokhbakhsh-Zamin F (2017) Frequency of plasmid-mediated quinolone resistance genes among clinical isolates of Pseudomonas aeruginosa in Kerman, Iran. Iran J Med Microbiol 11(3):10–18

    Google Scholar 

  • Rashidi M, Ahmadi A, Ramazanzadeh R, Noori B, Shafiee F (2020) Probiotic Enterococcus durans interference with oral Candida albicans adhesion: an in vitro study. J Adv Med Biomed Res 28(130):291–295

    Article  Google Scholar 

  • Saki M, Farajzadeh Sheikh A, Seyed-Mohammadi S, Asareh Zadegan Dezfuli A, Shahin M, Tabasi M et al (2022) Occurrence of plasmid-mediated quinolone resistance genes in Pseudomonas aeruginosa strains isolated from clinical specimens in southwest Iran: a multicentral study. Sci Rep 12(1):1–8

    Google Scholar 

  • Saleem S, Bokhari H (2020) Resistance profile of genetically distinct clinical Pseudomonas aeruginosa isolates from public hospitals in central Pakistan. J Infect Public Health 13(4):598–605

    Article  PubMed  Google Scholar 

  • Sharma I, Choudhury D (2015) Detection of Pel A gene in P. aeruginosa from clinical samples using polymerase chain reaction with reference to biofilm production in NE India. Indian J Dent Res 4:119–121

    Google Scholar 

  • Sheikh AF, Shahin M, Shokoohizadeh L, Halaji M, Shahcheraghi F, Ghanbari F (2019) Molecular epidemiology of colistin-resistant Pseudomonas aeruginosa producing NDM-1 from hospitalized patients in Iran. Iran J Basic Med Sci 22(1):38

    Google Scholar 

  • Takesue Y, Watanabe A, Kusachi S, Matsumoto T, Iwamoto A, Totsuka K et al (2012) Nationwide surveillance of antimicrobial susceptibility patterns of pathogens isolated from surgical site infections (SSI) in Japan. J Infect Chemother 18(6):816–826

    Article  PubMed  CAS  Google Scholar 

  • Tarafdar F, Jafari B, Azimi T (2020) Evaluating the antimicrobial resistance patterns and molecular frequency of blaoxa-48 and blaGES-2 genes in Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from burn wound infection in Tehran, Iran. New Microbes New Infect 37:100686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS (2022) Pathogenesis of the Pseudomonas aeruginosa biofilm: a review. Pathogens. 11(3):300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vasseur P, Vallet-Gely I, Soscia C, Genin S, Filloux A (2005) The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology. 151(3):985–997

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Ma LZ (2013) Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci 14(10):20983–21005

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Vice-Chancellor of Hamadan University of Medical Sciences for the support of the study.

Funding

This study was funded by Hamadan University of Medical Sciences, Hamadan, Iran (Project No. 140107266229).

Author information

Authors and Affiliations

Authors

Contributions

B. A and M. T designed the study. M. B, M. N, J. H, and A. A contributed to the experimental studies and Y. M analyzed the data. J. H, A. A, M. N, and M. J contributed to the sample collections. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Babak Asghari.

Ethics declarations

Conflict of interest

There are no contradictions or interests among the authors.

Ethics approval

This study was approved by the Ethics Committee of Hamadan University of Medical Sciences, Hamadan, Iran (Ethical approval No.IR.UMSHA.REC.1401.579).

Additional information

Communicated by: Agnieszka Szalewska-Palasz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmati, J., Nazari, M., Ahmadi, A. et al. In vitro evaluation of biofilm phenotypic and genotypic characteristics among clinical isolates of Pseudomonas aeruginosa in Hamadan, West of Iran. J Appl Genetics 65, 213–222 (2024). https://doi.org/10.1007/s13353-023-00811-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-023-00811-6

Keywords

Navigation