Skip to main content
Log in

Relevant outcomes from the history of Polcevera Viaduct in Genova, from design to nowadays failure

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

Failures of structures are often tragic events, however represent an opportunity to improve the understanding of phenomena. In this paper, after the review of Bridge collapses, on August 14, 2018, the history of Polcevera Bridge is presented, starting from aging considerations done by its designer Riccardo Morandi in 1981, analyzing the outcomes of inspections in the years from mid ‘80s with references to Italian Regulations on inspections, the interventions done during bridge life, and finally some considerations on its collapse. The case is certainly a reference for reinforced concrete bridges built just after the 2nd world war in a highly corrosion-prone environment due to nearby sea and industrial as well as chloride pollution. Large reference is done to data included into the Report of the Commission of Italian Ministry of Infrastructures for the failure of Polcevera Bridge. Monitoring for assessment of performance decay due to corrosion is discussed with reference to the meaningful example considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Mortellaro AP, Ievolella G, Lombardo F, Nuti C, Vanzi I (2018) Ministero delle Infrastrutture e dei Trasporti, Commissione Ispettiva Ministeriale (D.M. n. 386 del 14/08/2018—D.M. n. 387 del 27/08/2018—D.M. 392 del 05/09/2018), Comune di Genova, Autostrada A10—crollo del Viadotto Polcevera, Evento accaduto il 14 agosto 2018. http://www.mit.gov.it/comunicazione/news/ponte-crollo-ponte-morandi-commissione-ispettiva-genova/ponte-morandi-online-la. Accessed 23 July 2019

  2. Matousek M, Schneider J (1976) Untersuchungen zur Struktur des Sicherheitsproblems bei Bauwerken. Institut für Baustatik und Konstruktion der ETH Zürich, Bericht No. 59, ETH Zürich

  3. Schneider J (1997) Introduction to safety and reliability of structures. In: IABSE structural engineering documents SED 5, 2nd edition 2006

  4. Imhof D (2004) Risk assessment of existing bridge structures. Ph.D. Thesis. University of Cambridge, UK

  5. Ge Y, Xiang H (2011) Concept and requirements of sustainable development in bridge engineering. Front Archit Civ Eng China 5(4):432–450. https://doi.org/10.1007/s11709-011-0126-6

    Article  Google Scholar 

  6. Lee GC, Satish B, Mohan SB, Huang C, Fard BN (2013) A study of U.S. Bridge Failures (1980–2012). Technical Report MCEER-13-0008. https://ubir.buffalo.edu/xmlui/handle/10477/29474. Accessed 23 July 2019

  7. Xue J, Lavorato D, Bergami AV, Nuti C, Briseghella B, Marano GC, Ji T, Vanzi I, Tarantino AM, Santini S (2018) Severely damaged reinforced concrete circular columns repaired by turned steel rebar and high-performance concrete jacketing with steel or polymer fibers. Appl Sci. 8(9):1671. https://doi.org/10.3390/app8091671

    Article  Google Scholar 

  8. Lavorato D, Nuti C, Santini S, Briseghella B, Xue J (2015) A repair and retrofitting intervention to improve plastic dissipation and shear strength of Chinese RC bridges. In: IABSE Conference, Geneva 2015: Structural engineering: providing solutions to global challenges—Report, pp 1762–1767

    Article  Google Scholar 

  9. Lavorato D, Bergami AV, Nuti C, Briseghella B, Xue J, Tarantino AM, Marano GC, Santini S (2017) Ultra-high-performance fibre-reinforced concrete jacket for the repair and the seismic retrofitting of Italian and Chinese RC bridges. In: COMPDYN 2017—Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 1, pp 2149–2160

  10. Smith DW (1976) Bridge failures. Proc Inst Civ Eng 60:367–382

    Google Scholar 

  11. Hadipriono FC (1985) Analysis of events in recent structural failures. J Struct Eng 111(7):1468–1481. https://doi.org/10.1061/(asce)0733-9445(1985)111:7(1468)

    Article  Google Scholar 

  12. Hadipriono FC, Diaz CF (1988) Trends in recent construction and structural failures in the United States. Forensic Engineering 1(4):227–232

    Google Scholar 

  13. Harik IE, Shaaban AM, Gesund H, Valli YS, Wang ST (1990) United States bridge failures, 1951–1988. J Perform Constr Fac 4(4):272–277. https://doi.org/10.1061/(ASCE)0887-3828(1990)4:4(272)

    Article  Google Scholar 

  14. Wardhana K, Hadipriono FC (2003) Analysis of recent bridge failures in the United States. J Perform Constr Fac 17(3):144–150. https://doi.org/10.1061/(ASCE)0887-3828(2003)17:3(144)

    Article  Google Scholar 

  15. Biezma MV, Schanack F (2007) Collapse of steel bridges. J Perform Constr Fac 21(5):398–405. https://doi.org/10.1061/(ASCE)0887-3828(2007)21:5(398)

    Article  Google Scholar 

  16. Federal Highway Administration (FHWA) (2019) National Bridge Inventory (NBI). https://www.fhwa.dot.gov/bridge/nbi.cfm. Accessed 23 July 2019

  17. Hanson J (2018) In Encyclopedia of the Anthropocene. https://www.sciencedirect.com/topics/earth-and-planetary-sciences/precautionary-principle. Accessed 23 July 2019

    Chapter  Google Scholar 

  18. Morandi R (1981) Autostrade—“Concessioni e Costruzioni Autostrade SpA, Controllo sulle Condizioni Statiche e Sullo Stato di Conservazione del Viadotto polcevera dell’Autostrada Genova-Savona” Rome 15 December 1981, Technical Report

  19. Tuutti K (1982) Corrosion of steel in concrete. Dissertation, Swedish Cement and Concrete Institute (CBI)

  20. Ministero lavori pubblici, Circolare 19/07/1967 n. 6736/61A1.—Controllo delle condizioni di stabilità delle opere d’arte stradali

  21. Circolare Min. LL.PP. 34233 del 25.02.1991 “Istruzioni relative alla Norma sui ponti emessa con il DM 4/05/1990”

  22. UNI EN1337-10:2004 Appoggi strutturali—Parte 10: Ispezione e manutenzione

  23. CNR 10018/1999 Apparecchi di appoggio per le costruzioni. Istruzioni per l’impiego

  24. CNR UNI 10011/97 Costruzioni di acciaio. Istruzioni per il calcolo, l’esecuzione, il collaudo e la manutenzione

  25. Decreto del Presidente della Provincia Autonoma di Bolzano, 28 novembre 2011, n. 41 Disposizioni tecniche sul collaudo e sul controllo statico e periodico dei ponti stradali

  26. DIN 1076, 1999, Engineering structures in connection with roads, inspection and tests. (In German)

  27. RVS 13.03.01 Monitoring of bridges and others Engineering structures (In German, from Austria)

  28. SPEA La Manutenzione Programmata delle Opere Stradali. Manuale di Sorveglianza (Scheduled Maintenance of Road Works. Surveillance Manual)

  29. ANAS (2018) I Quaderni Tecnici per la Salvaguardia delle infrastrutture, vol 1, 2, 3, 4. https://www.stradeanas.it. Accessed 23 July 2019

  30. Isecke B (1983) Failure analysis of the collapse of Berlin Congress Hall. In: Crane AP (ed) Corrosion of reinforcement in concrete, chapter 5. Elseiver, Amsterdam, p 79

    Google Scholar 

  31. Helmerich R, Zunkel A (2014) Partial collapse of the Berlin Congress Hall on May 21st, 1980. Eng Fail Anal 43:107–119. https://doi.org/10.1016/j.engfailanal.2013.11.013

    Article  Google Scholar 

  32. Andrade C (2019) Propagation of reinforcement corrosion: principles, testing and modelling. Mater Struct 52(1):2. https://doi.org/10.1617/s11527-018-1301-1

    Article  Google Scholar 

  33. Elsener B, Andrade C, Gulikers J, Polder R, Raupach M (2003) Half-cell potential measurements—potential mapping on reinforced concrete structures. Mater Struct 36:461–471. https://doi.org/10.1007/BF02481526

    Article  Google Scholar 

  34. Polder R, Andrade C, Elsener B, Vennesland O, Gulikers J, Weidert R, Raupach M (2000) Test methods for on-site measurement of resistivity of concrete. Mater Struct 33:603–611. https://doi.org/10.1007/BF02480599

    Article  Google Scholar 

  35. Andrade C, Alonso C (2004) Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater Struct 37:623–643. https://doi.org/10.1007/BF02483292

    Article  Google Scholar 

  36. Vennesland Ø, Raupach M, Andrade C (2007) Recommendation of Rilem TC 154-EMC: ‘‘electrochemical techniques for measuring corrosion in concrete”—measurements with embedded probes’. Mater Struct 40:745–758. https://doi.org/10.1617/s11527-006-9219-4

    Article  Google Scholar 

  37. Castellote M, Andrade C et al (2006) Round-Robin test on methods for determining chloride transport in concrete. Mater Struct 39:990–995. https://doi.org/10.1617/s11527-006-9193-x

    Article  Google Scholar 

  38. Cigna R (1966) Studio sula corrosione dei ferri affogarti in malte cementizie effettuato mediante curve di polarizzazione. L’Industria Italiana del cemento, p 740

  39. Whiting D (1981) Rapid determination of the chloride permeability of concrete-, Report no. FHWA-RD-81-119, NTIS DB no. 82140724, Federal Highway Administration, Washington, DC, p 174

  40. Pedeferri P (1989) Corrosione e protezione delle strutture metalliche e in cemento armato negli ambienti naturali. Clup-Milano. Piazza Leonardo da Vinci, 32, Milano

  41. Finozzi I, Saetta A, Bundelman H (2018) Structural response of reinforcing bars affected by pitting corrosion: experimental evaluation. Constr Build Mater 192:478–488. https://doi.org/10.1016/j.conbuildmat.2018.10.088

    Article  Google Scholar 

  42. Lavorato D, Fiorentino G, Pelle A, Rasulo A, Bergami AV, Briseghella B, Nuti C (2019) A corrosion model for the interpretation of the cyclic behaviour of RC sections. Struct Concrete (submitted)

  43. Monti G, Nuti C (1992) Nonlinear cyclic behavior of reinforcing bars including buckling. J Struct Eng 118(12):3268–3284. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:12(3268)

    Article  Google Scholar 

  44. Zhou Z, Lavorato D, Nuti C, Marano GC (2015) A model for carbon and stainless-steel reinforcing bars including inelastic buckling for evaluation of capacity of existing structures. In: COMPDYN 2015—5th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake Engineering. pp 876–886

  45. Andrade C, Alonso C, Sarŕa J (2002) Corrosion rate evolution in concrete structures exposed to the atmosphere. Cement Concrete Comp 24(1):55–64. https://doi.org/10.1016/S0958-9465(01)00026-9

    Article  Google Scholar 

  46. Lo Bue F (2018) Analisi e studio degli effetti del degrado indotto dalla corrosione su strutture in c.a.. Dissertation, Politecnico di Torino

  47. Nuti C, Santini S, Vanzi I (2004) Damage, vulnerability and retrofitting strategies for the Molise hospital system following the 2002 Molise, Italy. Earthquake. Earthq Spectra 20(S1):S285–S299. https://doi.org/10.1193/1.1768541

    Article  Google Scholar 

  48. Nuti C, Rasulo A, Vanzi I (2009) Seismic assessment of utility systems: Application to water, electric power and transportation networks. In: Safety, reliability and risk analysis: theory, methods and applications, Proceedings of the Joint ESREL and SRA-Europe Conference, Valencia, Spain. pp 22–25

  49. Forte A, Santini S, Fiorentino G, Lavorato D, Bergami AV, Nuti C (2018) Influence of materials knowledge level on the assessment of the shear strength characteristic value of existing RC beams. Proceedings of the 12th fib International PhD Symposium in Civil Engineering, pp 979–986

  50. Lavorato D, Vanzi I, Nuti C, Monti, G (2017) Generation of non-synchronous earthquake signals. In: Risk and reliability analysis: theory and applications pp 169–198. Springer, Cham. https://doi.org/10.1007/978-3-319-52425-2_8

    Google Scholar 

  51. Lavorato D, Nuti C, Santini S (2018) Experimental investigation of the shear strength of RC beams extracted from an old structure and strengthened by carbon FRP U-strips. Appl Sci 8(7):1182. https://doi.org/10.3390/app8071182

    Article  Google Scholar 

  52. Camomilla, G, Donferri, M, Gennari Santori, A, Materazzi, L (1993) Reflectometric and dynamic measurements on the stays of the Polcevera viaduct in Genoa (Italy). In: Proceedings: Bridge management 2

Download references

Acknowledgements

Ministry of Public Work, the member of the Ministerial Commission that worked at Polcevera Bridge Reports, ENEA which invited the author to present the considerations on monitoring of the case.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camillo Nuti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. Camillo Nuti is one of the members of the Commission of the Ministry of Public Infrastructures, Council of Public Workds: Linee Guida per il monitoraggio, la valutazione della sicurezza strutturale e la classificazione del rischio dei ponti esistenti—Guidelines for monitoring, structural safety assessment and risk classification of existing bridges.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuti, C., Briseghella, B., Chen, A. et al. Relevant outcomes from the history of Polcevera Viaduct in Genova, from design to nowadays failure. J Civil Struct Health Monit 10, 87–107 (2020). https://doi.org/10.1007/s13349-019-00371-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-019-00371-6

Keywords

Navigation