Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

This chapter focuses on the theoretical and the practical aspects of the EMI technique for SHM/NDE. In principle, this technique is similar to the conventional global dynamic techniques described in Chapter 1. The main difference is the frequency range employed: the EMI technique typically employs 30 to 400 kHz whereas the global dynamic techniques employ less than 100 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, M., Park, G. and Inman, D.J. (2002). “Impedance-Based Monitoring of Stress in Thin Structural Members”, Proceeding of 11 th International Conference on Adaptive Structures and Technologies, October 23–26, Nagoya, Japan, 285–292.

    Google Scholar 

  • Annamdas, V.G.M. and Soh, C.K. (2007). “Three Dimensional Electromechanical Impedance Model I: Formulation of Directional Sum Impedance”, Journal of Aerospace Engineering, 20(1): 53–62.

    Article  Google Scholar 

  • Ayres, J.W., Lalande, F., Chaudhry, Z. and Rogers, C.A. (1998). “Qualitative Impedance-Based Health Monitoring of Civil Infrastructures”, Smart Materials and Structures, 7(5): 599–605.

    Article  Google Scholar 

  • Bhalla, S. (2001). “Smart System Based Automated Health Monitoring of Structures”, M.Eng. Thesis, Nanyang Technological University, Singapore.

    Google Scholar 

  • Bhalla, S. and Soh, C.K. (2004a). “Structural Health Monitoring by Piezo-Impedance Transducers: Modeling”, Journal of Aerospace Engineering, 17(4): 154–165.

    Article  Google Scholar 

  • Bhalla, S. and Soh, C.K. (2004b). “Structural Health Monitoring by Piezo-Impedance Transducers: Applications”, Journal of Aerospace Engineering, 17(4): 166–175.

    Article  Google Scholar 

  • Bhalla, S. and Soh, C.K. (2004c). “Impedance Based Modeling for Adhesively Bonded Piezo-Transducers”, Journal of Intelligent Material Systems and Structures, 15(12): 955–972.

    Article  Google Scholar 

  • Bhalla, S., Gupta, A., Bansal, S. and Garg, T. (2009). “Ultra Low Cost Adaptations of Electro-mechanical Impedance Technique for Structural Health Monitoring”, Journal of Intelligent Material Systems and Structures, 20(8): 991–999.

    Article  Google Scholar 

  • Boller, C. (2002). “Structural Health Management of Ageing Aircraft and Other Infrastructure”, Monograph on Structural Health Monitoring, Institute of Smart Structures and Systems (ISSS), 1–59.

    Google Scholar 

  • Dosch, J.J., Inman, D.J. and Garcia, E. (1992). “A Self Sensing Piezoelectric Actuator for Collocated Control”, Journal of Intelligent Material Systems and Structures, 3: 166–185.

    Article  Google Scholar 

  • Esteban, J. (1996). “Analysis of the Sensing Region of a PZT Actuator-Sensor”, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  • Giurgiutiu, V. and Rogers, C.A. (1997). “Electromechanical (E/M) Impedance Method for Structural Health Monitoring and Non-Destructive Evaluation”, Proceedings of International Workshop on Structural Health Monitoring, Stanford University, California, September 18–20, Technomic Publishing Co., 433–444.

    Google Scholar 

  • Giurgiutiu, V. and Rogers, C.A. (1998). “Recent Advancements in the Electro-Mechanical (E/M) Impedance Method for Structural Health Monitoring and NDE”, Proceedings of SPIE, 3329: 536–547.

    Article  Google Scholar 

  • Giurgiutiu, V., Reynolds, A. and Rogers, C.A. (1999). “Experimental Investigation of E/M Impedance Health Monitoring for Spot-Welded Structural Joints”, Journal of Intelligent Material Systems and Structures, 10(10): 802–812.

    Google Scholar 

  • Giurgiutiu, V. and Zagrai, A.N. (2002). “Embedded Self-Sensing Piezoelectric Active Sensors for On-Line Structural Identification”, Journal of Vibration and Acoustics, 124: 116–125.

    Article  Google Scholar 

  • Giurgiutiu, V., Zagrai, A.N. and Bao, J.J. (2002). “Embedded Active Sensors for In-Situ Structural Health Monitoring of Thin-Wall Structures”, Journal of Pressure Vessel Technology, 124: 293–302.

    Article  Google Scholar 

  • Hewlett Packard (1996), “HP LF 4192A Impedance Analyzer”, Operation Manual, Japan.

    Google Scholar 

  • Hu, Y.H. and Yang, Y.W. (2007). “Wave Propagation Modeling of PZT Sensing Region for Structural Health Monitoring”, Smart Materials and Structures, 16(3): 706–716.

    Article  Google Scholar 

  • Inman, D.J., Ahmadihan, M. and Claus, R.O. (2001). “Simultaneous Active Damping and Health Monitoring of Aircraft Panels”, Journal of Intelligent Material Systems and Structures, 12(11): 775–783.

    Article  Google Scholar 

  • Kawiecki, G. (2001). “Modal damping Measurement for Damage Detection”, Smart Materials and Structures, 10: 466–472.

    Article  Google Scholar 

  • Liang, C., Sun, F.P. and Rogers, C.A. (1994). “Coupled Electro-Mechanical Analysis of Adaptive Material Systems—Determination of the Actuator Power Consumption and System Energy Transfer”, Journal of Intelligent Material Systems and Structures, 5: 12–20.

    Article  Google Scholar 

  • Lopes, V., Park, G., Cudney, H.H. and Inman, D.J. (1999). “Smart Structures Health Monitoring Using Artificial Neural Network”, Proceedings of 2 nd International Workshop on Structural Health Monitoring, Stanford University, California, September 8–10, 976–985.

    Google Scholar 

  • Naidu, A.S.K. (2004). “Structural Damage Identification with Admittance Signatures of Smart PZT Transducers”, Ph.D. Thesis, Nanyang Technological University, Singapore.

    Google Scholar 

  • Overly, T.G., Park, G., Farinholt, K.M. and Farrar, C.R. (2008). “Development of an Extremely Compact Impedance-based Wireless Sensing Device”, Smart Materials and Structures, 17(6): 065011.

    Article  Google Scholar 

  • Pardo De Vera, C. and Guemes, J.A. (1997). “Embedded Self-Sensing Piezoelectric for Damage Detection”, Proceedings of International Workshop on Structural Health Monitoring, Stanford University, California, September 18–20, 445–455.

    Google Scholar 

  • Park, G., Kabeya, K., Cudney, H.H. and Inman, D.J. (1999). “Impedance-Based Structural Health Monitoring for Temperature Varying Applications”, JSME International Journal, 42(2): 249–258.

    Google Scholar 

  • Park, G. (2000). “Assessing Structural Integrity Using Mechatronic Impedance Transducers with Applications in Extreme Environments”, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  • Park, G., Cudney, H.H. and Inman, D.J. (2000a). “Impedance-Based Health Monitoring of Civil Structural Components”, Journal of Infrastructure Systems, 6(4): 153–160.

    Article  Google Scholar 

  • Park, G., Cudney, H.H. and Inman, D.J. (2000b). “An Integrated Health Monitoring Technique Using Structural Impedance Sensors”, Journal of Intelligent Material Systems and Structures, 11: 448–455.

    Google Scholar 

  • Park, G., Sohn, H., Farrar, C.R. and Inman, D.J. (2003). “Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward”, The Shock and Vibration Digest, 35(5): 451–463.

    Article  Google Scholar 

  • Peairs, D.M., Park, G. and Inman, D.J. (2004). “Improving Accessibility of the Impedance-Based Structural Health Monitoring Method”, Journal of Intelligent Material Systems and Structures, 15(2): 129–139.

    Article  Google Scholar 

  • PI Ceramic (2003). Product Information Catalogue, Lindenstrabe, Germany, http://www.piceramic.de.

    Google Scholar 

  • Raju, V. (1998). “Implementing Impedance-Based Health Monitoring Technique”, Master’s Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  • Saffi, M. and Sayyah, T. (2001). “Health Monitoring of Concrete Structures Strengthened with Advanced Composite Materials Using Piezoelectric Transducers”, Composites Part B: Engineering, 32(4): 333–342.

    Article  Google Scholar 

  • Samman, M.M. and Biswas, M. (1994a). “Vibration Testing for Non-Destructive Evaluation of Bridges. I: Theory”, Journal of Structural Engineering, 120(1): 269–289.

    Article  Google Scholar 

  • Samman, M.M. and Biswas, M. (1994b). “Vibration Testing for Non-Destructive Evaluation of Bridges. II: Results”, Journal of Structural Engineering, 120(1): 290–306.

    Article  Google Scholar 

  • Soh, C.K., Tseng, K.K.H., Bhalla, S. and Gupta, A. (2000). “Performance of Smart Piezoceramic Patches in Health Monitoring of a RC Bridge”, Smart Materials and Structures, 9(4): 533–542.

    Article  Google Scholar 

  • Soh, C.K. and Bhalla, S. (2005). “Calibration of Piezo-Impedance Transducers for Strength Prediction and Damage Assessment of Concrete”, Smart Materials and Structures, 14(4): 671–684.

    Article  Google Scholar 

  • Sun, F.P., Chaudhry, Z., Rogers, C.A., Majmundar, M. and Liang, C. (1995). “Automated Real-Time Structure Health Monitoring via Signature Pattern Recognition”, Proceedings of SPIE, 2443: 236–247.

    Article  Google Scholar 

  • Winston, H.A., Sun, F. and Annigeri, B.S. (2001). “Structural Health Monitoring with Piezoelectric Active Sensors”, Journal of Engineering for Gas Turbines and Power, 123(2): 353–358.

    Article  Google Scholar 

  • Xu, J.F., Yang, Y.W. and Soh, C.K. (2004). “Electromechanical Impedance-Based Structural Health Monitoring with Evolutionary Programming”, Journal of Aerospace Engineering, 17(4): 182–193.

    Article  Google Scholar 

  • Yang, Y.W., Bhalla, S., Wang, C., Soh, C.K. and Zhao, J. (2007). “Monitoring of Rocks Using Smart Sensors”, Tunnelling and Underground Space Technology, 22(2): 206–222.

    Article  Google Scholar 

  • Zhou, S.W., Liang, C. and Rogers, C.A. (1996). “An Impedance-Based System Modeling Approach for Induced Strain Actuator-Driven Structures”, Journal of Vibrations and Acoustics, 118(3): 323–332.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhalla, S., Soh, C.K. (2012). Electro-Mechanical Impedance Technique. In: Smart Materials in Structural Health Monitoring, Control and Biomechanics. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24463-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24463-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24462-9

  • Online ISBN: 978-3-642-24463-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics