Skip to main content
Log in

Quality by design empowered preparation of itraconazole albumin nanoparticles for prostate cancer

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The current advent explores the potential of itraconazole (ITR) in prostate cancer (PCa), by its incorporation into albumin nanoparticles (NP). ITR as a repurposed moiety has displayed tremendous potential in various cancers. However, poor aqueous solubility poses hurdles towards its clinical translation. Amorphisation of ITR was observed post-incorporation within NP matrix which could prevent its precipitation in aqueous media. ITR NP was developed using quality by design and multivariate analysis and evaluated for cellular uptake, cell proliferation inhibition and the mechanism of PCa cell inhibition. Time and concentration-dependent serum stability and hemolytic potential revealed safety of ITR NP. Morphological changes and nuclear staining studies revealed the efficacy of ITR and ITR NP in promoting growth inhibition of PC-3 cells. Superior qualitative and quantitative uptake, reactive oxygen species (ROS) and mitochondrial impairment for ITR NP in comparison with ITR and control group was observed. Cell cycle study revealed remarkable G2/M phase inhibition in PC-3 cells. ITR NP demonstrated superior anticancer potential in 3D tumoroids mimicking the micro-metastatic lesions compared to control and ITR. Hence, ITR NP can be a favorable alternative therapeutic alternative in PCa.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The datasets generated will be made available on reasonable request.

References

  1. Wang L, Lu B, He M, Wang Y, Wang Z, Du L. Prostate cancer incidence and mortality: Global status and temporal trends in 89 countries from 2000 to 2019. Front Public Heal. 2022;10.

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  3. Kichloo A, Albosta M, Dahiya D, Guidi JC, Aljadah M, Singh J, et al. Systemic adverse effects and toxicities associated with immunotherapy: A review. World J Clin Oncol. 2021;12:150–63.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee M, Hong H, Kim W, Zhang L, Friedlander TW, Fong L, et al. Itraconazole as a noncastrating treatment for biochemically recurrent prostate cancer: A phase 2 study. Clin Genitourin Cancer. 2019;17:e92–6.

    Article  PubMed  Google Scholar 

  5. Li CL, Fang ZX, Wu Z, Hou YY, Wu HT, Liu J. Repurposed itraconazole for use in the treatment of malignancies as a promising therapeutic strategy. Biomed Pharmacother. 2022;154.

  6. Hardin TC, Graybill JR, Fetchick R, Woestenborghs R, Rinaldi MG, Kuhn JG. Pharmacokinetics of itraconazole following oral administration to normal volunteers. Antimicrob Agents Chemother. 1988;32:1310–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prentice AG, Glasmacher A. Making sense of itraconazole pharmacokinetics. J Antimicrob Chemother. 2005;56.

  8. Famta P, Shah S, Vambhurkar G, Srinivasarao DA, Jain N, Begum N, et al. Quality by design endorsed fabrication of Ibrutinib-loaded human serum albumin nanoparticles for the management of leukemia. Eur J Pharm Biopharm. 2023;190:94–106.

    Article  CAS  PubMed  Google Scholar 

  9. Adick A, Hoheisel W, Schneid S, Mulac D, Azhdari S, Langer K. Challenges of nanoparticle albumin bound (nab) technology: Comparative study of Abraxane® with a newly developed albumin-stabilized itraconazole nanosuspension. Eur J Pharm Biopharm. 2023;193:129–43.

    Article  CAS  PubMed  Google Scholar 

  10. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomedicine. 2009;4:99–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, et al. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006;17:1263–8.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Liu Z, Yang K, Kong C, Liu C, Chen H, et al. Tumor progression of non-small cell lung cancer controlled by albumin and micellar nanoparticles of itraconazole, a multitarget angiogenesis inhibitor. Mol Pharm. 2017;14:4705–13.

    Article  CAS  PubMed  Google Scholar 

  13. Jin G, Jin M, Yin X, Jin Z, Chen L, Gao Z. A comparative study on the effect of docetaxel-albumin nanoparticles and docetaxel-loaded PEG-albumin nanoparticles against non-small cell lung cancer. Int J Oncol. 2015;47:1945–53.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang S, Asghar S, Yang L, Hu Z, Chen Z, Shao F, et al. Borneol and poly (ethylene glycol) dual modified BSA nanoparticles as an itraconazole vehicle for brain targeting. Int J Pharm. 2020;575.

  15. Zhao D, Zhao X, Zu Y, Li J, Zhang Y, Jiang R, et al. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine. 2010;5:669–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Famta P, Shah S, Jain N, Srinivasarao DA, Murthy A, Ahmed T, et al. Albumin-hitchhiking: Fostering the pharmacokinetics and anticancer therapeutics. J Control Release. 2023;353:166–85.

    Article  CAS  PubMed  Google Scholar 

  17. Mourya A, Famta P, Shah S, Srinivasarao DA, Sharma A, Vambhurkar G, et al. Raloxifene loaded D-α-tocopherol polyethylene glycol 1000 succinate stabilized poly (ε-caprolactone) nanoparticles augmented drug delivery and apoptosis in breast cancer cells. J Drug Deliv Sci Technol. 2024;92.

  18. Boateng-Marfo Y, Dong Y, Loh ZH, Lin H, Ng WK. Intravenous human serum albumin (HSA)-bound artemether nanoparticles for treatment of severe malaria. Colloids Surf A Physicochem Eng Asp. 2018;536:20–9.

    Article  CAS  Google Scholar 

  19. Charankumar K, Bagasariya D, Jain N, Famta P, Shah S, Vambhurkar G, et al. Quality by design (QbD) abetted development of pioglitazone incorporated liposomes-loaded hyaluronic acid-based in situ hydrogel for the management of melanoma. J Drug Deliv Sci Technol. 2023;84:104453.

    Article  CAS  Google Scholar 

  20. Kumar R, Singh A, Sharma K, Dhasmana D, Garg N, Siril PF. Preparation, characterization and in vitro cytotoxicity of Fenofibrate and Nabumetone loaded solid lipid nanoparticles. Mater Sci Eng C. 2020;106.

  21. Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. 2016;6:399–408.

    Article  CAS  Google Scholar 

  22. Yang Y, Huang Z, Li J, Mo Z, Huang Y, Ma C, et al. PLGA porous microspheres dry powders for codelivery of afatinib-loaded solid lipid nanoparticles and paclitaxel: Novel therapy for EGFR tyrosine kinase inhibitors resistant nonsmall cell lung cancer. Adv Healthc Mater. 2019;8.

  23. Kommineni N, Mahira S, Domb AJ, Khan W. Cabazitaxel-loaded nanocarriers for cancer therapy with reduced side effects. Pharmaceutics. 2019;11:1–22.

    Article  Google Scholar 

  24. Shah S, Famta P, Fernandes V, Bagasariya D, Charankumar K, Kumar Khatri D, et al. Quality by design steered development of niclosamide loaded liposomal thermogel for melanoma: in vitro and ex vivo evaluation. Eur J Pharm Biopharm. 2022;180:119–36.

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Liu Y, Li W, Jiang X, Ji Y, Wu X, et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy. Nano Lett. 2011;11:772–80.

    Article  CAS  PubMed  Google Scholar 

  26. Sivandzade F, Bhalerao A, Cucullo L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio-protocol. 2019;9.

  27. Pioch J, Blomgran R. Optimized flow cytometry protocol for dihydrorhodamine 123-based detection of reactive oxygen species in leukocyte subpopulations in whole blood. J Immunol Methods. 2022;507.

  28. Shah S, Famta P, Kumar R, Sharma A, Vambhurkar G, Pandey G, et al. Quality by design fostered fabrication of cabazitaxel loaded pH-responsive Improved nanotherapeutics against prostate cancer. Colloids Surf B Biointerfaces. 2024;234:113732.

    Article  CAS  PubMed  Google Scholar 

  29. Sonam, Chaudhary H, Kumar V. Taguchi design for optimization and development of antibacterial drug-loaded PLGA nanoparticles. Int J Biol Macromol. 2014;64:99–105.

    Article  CAS  PubMed  Google Scholar 

  30. Rampado R, Peer D. Design of experiments in the optimization of nanoparticle-based drug delivery systems. J Control Release. 2023;358:398–419.

    Article  CAS  PubMed  Google Scholar 

  31. Ngan CL, Basri M, Lye FF, Fard Masoumi HR, Tripathy M, Abedi Karjiban R, et al. Comparison of Box-Behnken and central composite designs in optimization of fullerene loaded palm-based nano-emulsions for cosmeceutical application. Ind Crops Prod. 2014;59:309–17.

    Article  CAS  Google Scholar 

  32. Kasekar NM, Singh S, Jadhav KR, Kadam VJ. BCS class II drug loaded protein nanoparticles with enhanced oral bioavailability: in vitro evaluation and in vivo pharmacokinetic study in rats. Drug Dev Ind Pharm. 2020;46:955–62.

    Article  CAS  PubMed  Google Scholar 

  33. Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MNV. Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release. 2007;119:77–85.

    Article  CAS  PubMed  Google Scholar 

  34. Shah S, Rangaraj N, Singh SB, Srivastava S. Exploring the unexplored avenues of surface charge in nano-medicine. Colloids Interface Sci Commun. Elsevier; 2021;42:100406.

  35. Rangaraj N, Pailla SR, Shah S, Prajapati S, Sampathi S. QbD aided development of ibrutinib-loaded nanostructured lipid carriers aimed for lymphatic targeting: evaluation using chylomicron flow blocking approach. Drug Deliv Transl Res. 2020;10:1476–94.

    Article  CAS  PubMed  Google Scholar 

  36. Ho HN, Tran TH, Tran TB, Yong CS, Nguyen CN. Optimization and characterization of artesunate-loaded chitosan-decorated poly(D,L-lactide-co-glycolide) acid nanoparticles. J Nanomater. 2015;2015.

  37. da Silva Júnior WF, de Oliveira Pinheiro JG, Moreira CDLFA, de Souza FJJ, de Lima ÁAN. Alternative technologies to improve solubility and stability of poorly water-soluble Drugs. Multifunct Syst Comb Deliv Biosensing Diagnostics. 2017;281–305.

  38. Kaboli SF, Mehrnejad F, Nematollahzadeh A. Molecular modeling prediction of albumin-based nanoparticles and experimental preparation, characterization, and in-vitro release kinetics of prednisolone from the nanoparticles. J Drug Deliv Sci Technol. 2021;64:102588.

    Article  CAS  Google Scholar 

  39. Alshetaili AS, Ansari MJ, Anwer MK, Ganaie MA, Iqbal M, Alshahrani SM, et al. Enhanced oral bioavailability of ibrutinib encapsulated poly (Lactic-co- Glycolic Acid) nanoparticles: Pharmacokinetic evaluation in rats. Curr Pharm Anal. 2019;15:661–8.

    Article  CAS  Google Scholar 

  40. Jana B, Kim S, Chae JB, Chung H, Kim C, Ryu JH. Mitochondrial membrane disrupting molecules for selective killing of senescent cells. ChemBioChem. 2021;22:3391–7.

    Article  CAS  PubMed  Google Scholar 

  41. Vinarov Z, Gancheva G, Burdzhiev N, Tcholakova S. Solubilization of itraconazole by surfactants and phospholipid-surfactant mixtures: interplay of amphiphile structure, pH and electrostatic interactions. J Drug Deliv Sci Technol. 2020;57:101688.

    Article  CAS  Google Scholar 

  42. Xu C, Zhuo Y, Liu Y, Chen H. Itraconazole inhibits the growth of cutaneous squamous cell carcinoma by targeting HMGCS1/ACSL4 axis. Front Pharmacol. 2022;13:828983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. John R, Dalal B, Shankarkumar A, Devarajan PV. Innovative Betulin Nanosuspension exhibits enhanced anticancer activity in a Triple Negative Breast Cancer Cell line and Zebrafish angiogenesis model. Int J Pharm. 2021;600.

Download references

Acknowledgements

The authors acknowledge the research funding support by the Department of Pharmaceuticals (DoP), Ministry of Chemicals and Fertilizers, Govt. of India to “Pharmaceutical Innovation and Translational Research Lab” (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, INDIA.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Saurabh Shah—Conceptualization, Methodology, experimentation, software validation, Original draft writing; Paras Famta – Methodology, experimentation, software validation, Original draft writing; Anamika Sharma, Rahul Kumar, Giriraj Pandey, Ganesh Vambhurkar – Data curation, formal analysis; Dadi A. Srinivasarao, Akshay Shinde, Sajja Bhanu Prasad – Manuscript review editing; Amit Asthana—Supervision, and Saurabh Srivastava – Conceptualization, Supervision, Validation.

Corresponding author

Correspondence to Saurabh Srivastava.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors give consent to publication.

Competing interests

The authors declare no relevant financial or non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 153 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S., Famta, P., Sharma, A. et al. Quality by design empowered preparation of itraconazole albumin nanoparticles for prostate cancer. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01592-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01592-z

Keywords

Navigation