Skip to main content

Advertisement

Log in

Multifunctionalised skin substitute of hybrid gelatin-polyvinyl alcohol bioinks for chronic wound: injectable vs. 3D bioprinting

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Chronic wounds are challenging to heal and increase global mortality. The effectiveness of skin graft is limited by rejection, fibrosis, and inadequate donor site. Multifunctionalised-hydrogel skin substitutes promoted higher wound healing by maintaining the moisture microenvironment and permit gas exchange/nourishment in prolong cell viability/activity. The purpose of this study was to evaluate a skin substitute using two strategies; via injectable and 3D bioprinting technique. New hydrogel formulations that composed of gelatin (GE) and polyvinyl-alcohol (PVA) were constructed using a pre-mix crosslinking approach with genipin (GNP) to generate the biodegradable and biocompatible skin substitute with reduced secondary traumatic wound. GPVA5_GNP (6% GE: 5% PVA crosslinked with GNP) was the most stable hydrogel for wound healing application with the longest enzymatic degradation and stable hydrogel for absorption of excess wound exudates. Primary human dermal fibroblasts (HDFs) migrated extensively through 3D bioprinted hydrogels with larger average pore sizes and interconnected pores than injectable hydrogels. Moreover, 3D bioprinted GPVA hydrogels were biocompatible with HDFs and demonstrated > 90% cell viability. HDFs maintained their phenotype and positively expressed collagen type-I, vinculin, short and dense F-actin, alpha-smooth muscle actin, and Ki67. Additionally, the presence of GNP demonstrated antioxidant capacity and high-ability of angiogenesis. The utilisation of the 3D bioprinting (layer-by-layer) approach did not compromise the HDFs’ growth capacity and biocompatibility with selected bioinks. In conclusion, it allows the cell encapsulation sustainability in a hydrogel matrix for a longer period, in promoting tissue regeneration and accelerating healing capacity, especially for difficult or chronic wound.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kharaziha M, Baidya A, Annabi N. Rational design of immunomodulatory hydrogels for chronic wound healing. 2021;33:39. https://doi.org/10.1002/adma.202100176.

  2. Mustoe TA, O’Shaughnessy K, Kloeters O. Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg. 2006;117(7 SUPPL.):35–41. https://doi.org/10.1097/01.prs.0000225431.63010.1b.

    Article  CAS  Google Scholar 

  3. Morton LM, Phillips TJ. Wound healing and treating wounds differential diagnosis and evaluation of chronic wounds. J Am Acad Dermatol. 2016;74(4):589–605. https://doi.org/10.1016/j.jaad.2015.08.068.

    Article  PubMed  Google Scholar 

  4. Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020;12:1–30. https://doi.org/10.3390/pharmaceutics12080735.

    Article  CAS  Google Scholar 

  5. Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. Biomolecules. 2021;11(5):1–25. https://doi.org/10.3390/biom11050700.

    Article  CAS  Google Scholar 

  6. Subramaniam T, et al. Comparison of three different skin substitutes in promoting wound healing in an ovine model. Burns. 2022;48(5):1198–208. https://doi.org/10.1016/j.burns.2021.08.012.

    Article  PubMed  Google Scholar 

  7. Fadilah NIM, Maarof M, Motta A, Tabata Y, Fauzi MB. The discovery and development of natural-based biomaterials with demonstrated wound healing properties: a reliable approach in clinical trials. Biomedicines. 2022;10(9). https://doi.org/10.3390/biomedicines10092226.

  8. Liu T, Qiu C, Ben C, Li H, Zhu S. One-step approach for full-thickness skin defect reconstruction in rats using minced split-thickness skin grafts with Pelnac overlay. Burns and Trauma. 2019;7:1–13. https://doi.org/10.1186/s41038-019-0157-0.

    Article  Google Scholar 

  9. Fan Z, et al. A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv Func Mater. 2014;24(25):3933–43. https://doi.org/10.1002/adfm.201304202.

    Article  CAS  Google Scholar 

  10. Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular nanomedicine towards cancer. J Pharm Sci. 2012;101(7):2271–80. https://doi.org/10.1002/jps.

    Article  CAS  PubMed  Google Scholar 

  11. Il Kang J, Park KM. Advances in gelatin-based hydrogels for wound management. J Mater Chem B. 2021;9(6):1503–1520. https://doi.org/10.1039/d0tb02582h.

  12. Zhu T, et al. Recent progress of polysaccharide-based hydrogel interfaces for wound healing and tissue engineering. Adv Mater Interfaces. 2019;6(17):1–22. https://doi.org/10.1002/admi.201900761.

    Article  ADS  CAS  Google Scholar 

  13. Masri S, Maarof M, Aziz IA, Idrus R, Fauzi MB. Performance of hybrid gelatin-PVA bioinks integrated with genipin through extrusionbased 3D bioprinting: an in vitro evaluation using human dermal fibroblasts. Int J Bioprint. 2023;9(3). https://doi.org/10.18063/ijb.677.

  14. Placone JK, Engler AJ. Recent advances in extrusion-based 3d printing for biomedical applications. Adv Healthcare Mater. 2018;7(8):1–11. https://doi.org/10.1002/adhm.201701161.

    Article  CAS  Google Scholar 

  15. Villalona GA, et al. Cell-seeding techniques in vascular tissue engineering. Tissue Engineering - Part B: Reviews. 2010;16(3):341–50. https://doi.org/10.1089/ten.teb.2009.0527.

    Article  PubMed  Google Scholar 

  16. Kačarević ŽP et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials. 2018;11(11). https://doi.org/10.3390/ma11112199.

  17. Zawani M, Maarof M, Tabata Y, Motta A, Fauzi MB. Quercetin-embedded gelastin injectable hydrogel as provisional biotemplate for future cutaneous application: optimization and in vitro evaluation. Gels. 2022;8(623). https://doi.org/10.3390/gels8100623.

  18. Liu Y, et al. Tunable physical and mechanical properties of gelatin hydrogel after transglutaminase crosslinking on two gelatin types. Int J Biol Macromol. 2020;162:405–13. https://doi.org/10.1016/j.ijbiomac.2020.06.185.

    Article  CAS  PubMed  Google Scholar 

  19. Keenan TR. Gelatin. Elsevier 2012;10. https://doi.org/10.1016/B978-0-444-53349-4.00265-X.

  20. Han F, Dong Y, Su Z, Yin R, Song A, Li S. Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material. Int J Pharm. 2014;476(1):124–33. https://doi.org/10.1016/j.ijpharm.2014.09.036.

    Article  CAS  PubMed  Google Scholar 

  21. Ge S, et al. Coordination of covalent cross-linked gelatin hydrogels via oxidized tannic acid and ferric ions with strong mechanical properties. J Agric Food Chem. 2019;67(41):1–40. https://doi.org/10.1021/acs.jafc.9b03947.

    Article  CAS  Google Scholar 

  22. Bilhim T, Pisco JM, Duarte M, Oliveira AG. Polyvinyl alcohol particle size for uterine artery embolization: a prospective randomized study of initial use of 350–500μm particles versus initial use of 500–700μm particles. J Vasc Interv Radiol. 2011;22(1):21–7. https://doi.org/10.1016/j.jvir.2010.09.018.

    Article  PubMed  Google Scholar 

  23. Charron PN, Braddish TA, Oldinski RA. PVA-gelatin hydrogels formed using combined theta-gel and cryo-gel fabrication techniques. J Mech Behav Biomed Mater. 2019;92:90–6. https://doi.org/10.1016/j.jmbbm.2019.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zulkiflee I, et al. Characterization of dual-layer hybrid biomatrix for future use in cutaneous wound healing. Materials. 2023;16(1162). https://doi.org/10.3390/ma16031162.

  25. Erdagi SI, Ngwabebhoh FA, Yildiz U. International journal of biological macromolecules genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications. Int J Biol Macromol. 2020;149:651–63. https://doi.org/10.1016/j.ijbiomac.2020.01.279.

    Article  CAS  Google Scholar 

  26. Shaik MM, Dapkekar A, Rajwade JM, Jadhav SH, Kowshik M. Antioxidant-antibacterial containing bi-layer scaffolds as potential candidates for management of oxidative stress and infections in wound healing. J Mater Sci: Mater Med. 2019;30(1). https://doi.org/10.1007/s10856-018-6212-8.

  27. Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6(12):2583–90. https://doi.org/10.1039/b924290b.

    Article  ADS  CAS  Google Scholar 

  28. Mahnama H, Dadbin S, Frounchi M, Rajabi S. Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration. Artificial Cells, Nanomedicine and Biotechnology. 2017;45(5):928–35. https://doi.org/10.1080/21691401.2016.1193025.

    Article  CAS  PubMed  Google Scholar 

  29. Sulistiawati S, Rusyanti Y, Hendiani I, Syamsunarno MRAA, Hikmah ZN. Effect of 0.1% genipin as a crosslinking agent to degradability of platelet rich fibrin (prf). Key Eng Mater. 2020;829:258–262. https://doi.org/10.4028/www.scientific.net/KEM.829.258.

  30. Rizzo F, Kehr NS. Recent advances in injectable hydrogels for controlled and local drug delivery. Adv Healthcare Mater. 2020;10(1):1–26. https://doi.org/10.1002/adhm.202001341.

    Article  CAS  Google Scholar 

  31. Masri S, Fauzi M. Current insight of printability quality improvement strategies in natural-based bioinks for skin regeneration and wound healing. J Polymers. 2021;13(7). https://doi.org/10.3390/polym13071011.

  32. Chen DXB. Extrusion bioprinting of scaffolds for tissue engineering applications. 2019. https://doi.org/10.1007/978-3-030-03460-3.

    Article  Google Scholar 

  33. Masri S, Maarof M, Mohd NF, Hiraoka Y, Tabata Y, Fauzi MB. Injectable crosslinked genipin hybrid gelatin – PVA hydrogels for future use as bioinks in expediting cutaneous healing capacity : physicochemical characterisation and. Biomedicine. 2022;10(10):1–22. https://doi.org/10.3390/biomedicines10102651.

  34. Barba BJD, Oyama TG, Taguchi M. Simple fabrication of gelatin – polyvinyl alcohol bilayer hydrogel with wound dressing and nonadhesive duality. Polymers Adv Tech, Wiley. 2021;1–9. https://doi.org/10.1002/pat.5442.

  35. Thangprasert A, Tansakul C, Thuaksubun N, Meesane J. Mimicked hybrid hydrogel based on gelatin/PVA for tissue engineering in subchondral bone interface for osteoarthritis surgery. Mater Des. 2019;183: 108113. https://doi.org/10.1016/j.matdes.2019.108113.

    Article  CAS  Google Scholar 

  36. Agubata CO, Mbah MA, Akpa PA, Ugwu G. Application of self-healing, swellable and biodegradable polymers for wound treatment. J Wound Care. 2021;30:IVi–IVx. https://doi.org/10.12968/jowc.2021.30.Sup9a.IV.

  37. Wang H, Pieper J, Péters F, Van Blitterswijk CA, Lamme EN. Synthetic scaffold morphology controls human dermal connective tissue formation. Journal of Biomedical Materials Research - Part A. 2005;74(4):523–32. https://doi.org/10.1002/jbm.a.30232.

    Article  CAS  PubMed  Google Scholar 

  38. Liu H, Fan H, Cui Y, Chen Y, Yao K, Goh JCH. Effects of the controlled-released basic fibroblast growth factor from chitosan - Gelatin microspheres on human fibroblasts cultured on a chitosan - Gelatin scaffold. Biomacromol. 2007;8(5):1446–55. https://doi.org/10.1021/bm061025e.

    Article  CAS  Google Scholar 

  39. Boekema BKHL, et al. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing. J Mater Sci - Mater Med. 2014;25(2):423–33. https://doi.org/10.1007/s10856-013-5075-2.

    Article  CAS  PubMed  Google Scholar 

  40. Xu M, et al. Porous PVA/SA/HA hydrogels fabricated by dual-crosslinking method for bone tissue engineering. J Biomater Sci Polym Ed. 2020;31(6):816–31. https://doi.org/10.1080/09205063.2020.1720155.

    Article  CAS  PubMed  Google Scholar 

  41. Sultan S, Mathew AP. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Nanoscale. 2018;10(9):4421–31. https://doi.org/10.1039/c7nr08966j.

    Article  CAS  PubMed  Google Scholar 

  42. Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology. 2016;68(3):355–69. https://doi.org/10.1007/s10616-015-9895-4.

    Article  CAS  PubMed  Google Scholar 

  43. Akther F, Little P, Li Z, Nguyen NT, Ta HT. Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Adv. 2020;10(71):43682–703. https://doi.org/10.1039/d0ra08566a.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alven S, Aderibigbe BA. Hyaluronic acid-based scaffolds as potential bioactive wound dressings. Polymers. 2021;13:13. https://doi.org/10.3390/polym13132102.

  45. Okur ME, Karantas ID, Şenyiğit Z, Üstündağ Okur N, Siafaka PI. Recent trends on wound management: new therapeutic choices based on polymeric carriers. Asian J Pharm Sci. 2020;15(6):661–684. https://doi.org/10.1016/j.ajps.2019.11.008.

  46. Wang Y, et al. Biomimetic fibroblast-loaded artificial dermis with ‘sandwich’ structure and designed gradient pore sizes promotes wound healing by favoring granulation tissue formation and wound re-epithelialization. Acta Biomater. 2016;30(December):246–57. https://doi.org/10.1016/j.actbio.2015.11.035.

    Article  CAS  PubMed  Google Scholar 

  47. Wu S, et al. Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing. J Biomater Appl. 2017;31(10):1380–90. https://doi.org/10.1177/0885328217702526.

    Article  CAS  PubMed  Google Scholar 

  48. Marrella A, et al. 3D porous gelatin/PVA hydrogel as meniscus substitute using alginate micro-particles as porogens. Polymers. 2018;10(4):1–16. https://doi.org/10.3390/polym10040380.

    Article  CAS  Google Scholar 

  49. Hago EE, Li X. Interpenetrating polymer network hydrogels based on gelatin and PVA by biocompatible approaches: Synthesis and characterization. Adv Mater Sci Eng. 2013;2013:1–9. https://doi.org/10.1155/2013/328763.

    Article  CAS  Google Scholar 

  50. Bae SH, et al. Evaluation of the potential anti-adhesion effect of the PVA/Gelatin membrane. Journal of Biomedical Materials Research - Part B Applied Biomaterials. 2014;102(4):840–9. https://doi.org/10.1002/jbm.b.33066.

    Article  CAS  PubMed  Google Scholar 

  51. Yin H, Udomsom S, Kantawong F. Fabrication of blended gelatin–polyvinyl alcohol–chitosan scaffold for wound regeneration. Chiang Mai University Journal of Natural Sciences. 2020;19(4):930–52. https://doi.org/10.12982/CMUJNS.2020.0058.

    Article  Google Scholar 

  52. Sun T, Mai S, Norton D, Haycock JW, Ryan AJ, MacNeil S. Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds. Tissue Eng. 2005;11(7–8):1023–33. https://doi.org/10.1089/ten.2005.11.1023.

    Article  CAS  PubMed  Google Scholar 

  53. Bhatnagar P, Law JX, Ng SF. Chitosan reinforced with kenaf nanocrystalline cellulose as an effective carrier for the delivery of platelet lysate in the acceleration of wound healing. Polymers. 2021;13(24). https://doi.org/10.3390/polym13244392.

  54. Ibañez RIR, Do Amaral RJFC, Reis RL, Marques AP, Murphy CM, O’brien FJ. 3D-printed gelatin methacrylate scaffolds with controlled architecture and stiffness modulate the fibroblast phenotype towards dermal regeneration. Polymers. 2021;13(15). https://doi.org/10.3390/polym13152510.

  55. Hu T, et al. 3D-printable supramolecular hydrogels with shear-thinning property: fabricating strength tunable bioink via dual crosslinking. Bioactive Materials. 2020;5(4):808–18. https://doi.org/10.1016/j.bioactmat.2020.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fan X, et al. Therapeutic potential of genipin in various acute liver injury, fulminant hepatitis, NAFLD and other non-cancer liver diseases: More friend than foe. Pharmacol Res. 2020;159:104945. https://doi.org/10.1016/j.phrs.2020.104945.

  57. Shan MQ, et al. Comparative analysis of sixteen active compounds and antioxidant and anti-influenza properties of Gardenia jasminoides fruits at different times and application to the determination of the appropriate harvest period with hierarchical cluster analysis. J Ethnopharmacol. 2019;233:169–78. https://doi.org/10.1016/j.jep.2019.01.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors would like to express immense gratitude to the Faculty of Medicine, UKM, for the guidance and resources to complete this manuscript.

Funding

The study was funded by grants provided by the Fundamental Research Grant Scheme (FRGS), FRGS/1/2020/STG05/UKM/02/7.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, S.M and M.B.F; methodology, S.M; validation, M.B.F, S.M, M.M, Y.T and Y.H; investigation, S.M; data curation, S.M; writing-original draft preparation, S.M; writing-review and editing, M.B.F, M.M, N.I.M.F, visualisation, S.M, L.Q.H; supervision, M.B.F; project administration, M.B.F; funding acquisition, M.B.F. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mh Busra Fauzi.

Ethics declarations

Consent for publication

The human skin samples were obtained from six consented patients (written and verbal) and permission was obtained from each of the subjects to publish their data.

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

The study design was approved by the Universiti Kebangsaan Malaysia Research Ethics Committee (Code no. FF-2021–376 and JEP-2021–605).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masri, S., Fadilah, N.I.M., Hao, L.Q. et al. Multifunctionalised skin substitute of hybrid gelatin-polyvinyl alcohol bioinks for chronic wound: injectable vs. 3D bioprinting. Drug Deliv. and Transl. Res. 14, 1005–1027 (2024). https://doi.org/10.1007/s13346-023-01447-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01447-z

Keywords

Navigation