Skip to main content

Advertisement

Log in

Newly synthesized methionine aminopeptidase 2 inhibitor hinders tumor growth

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Methionine aminopeptidase 2 (MetAp2) inhibition has been recognized as a promising approach for suppressing angiogenesis and cancer progression. Small molecule fumagillol derivatives with adamantane side groups were synthesized and evaluated for MetAp2 inhibition activity, and a lead molecule with superior abilities to inhibit the enzymatic activity of MetAp2 was identified. The compound, referred to as AD-3281, effectively suppressed proliferation of cancer and endothelial cells and impaired tube formation of endothelial cells in vitro. When administered systemically, AD-3281 was well tolerated and led to a significant suppression of human melanoma and mammary tumor xenografts grown in mice. The activity in vivo was associated with reduced angiogenesis and tumor proliferation as detected histologically. In order to develop a formulation that can solubilize AD-3281 with a minimal content of organic solvents, biodegradable nanoparticles comprised of poly-lactic-co-glycolic acid (PLGA) were fabricated and characterized. Compared with the free compound, AD-3281-loaded nanoparticles showed an advantageous cellular availability and uptake, leading to higher activity in cells and better transport in three-dimensional (3D) cultures. Taken together, we introduce a novel MetAp2 inhibitor with high anti-cancer activity and a stable nano-formulation with a high potential for future clinical translation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article and supplementary materials. Raw data are available from the corresponding author on request.

References

  1. Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer. Oncogene. 2003 2242 2003;22:6549–56.

  2. Eskens FALM. Angiogenesis inhibitors in clinical development; where are we now and where are we going? Br J Cancer. 2004 901 2004;90:1–7.

  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  4. Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet. 2016;388:518–29.

    Article  CAS  PubMed  Google Scholar 

  5. De Palma M, Biziato D, Petrova T V. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017.

  6. Holmgren L, O’reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995;1:149–53.

  7. Naumov G, Folkman J. Strategies to prolong the nonangiogenic dormant state of human cancer. Antiangiogenic Cancer Ther. 2007.

  8. Yadav L, Puri N, Rastogi V, Satpute P, Sharma V. Tumour angiogenesis and angiogenic inhibitors: a review. J Clin Diagn Res. 2015;9:XE01.

  9. Bielenberg DR, Zetter BR. The contribution of angiogenesis to the process of metastasis. Cancer J. 2015;21:267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Addlagatta A, Hu X, Liu JO, Matthews BW. Structural basis for the functional differences between type I and type II human methionine aminopeptidases. Biochemistry. 2005;44:14741–9.

    Article  CAS  PubMed  Google Scholar 

  11. Arfin SM, Kendall RL, Hall L, Weaver LH, Stewart AE, Matthews BW, Bradshaw RA. Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proc Natl Acad Sci U S A. 1995;92:7714–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sawanyawisuth K, Wongkham C, Pairojkul C, Saeseow O-T, Riggins GJ, Araki N, Wongkham S. Methionine aminopeptidase 2 over-expressed in cholangiocarcinoma: potential for drug target. Acta Oncol (Madr). 2009.

  13. Nahari D, Satchi-Fainaro R, Chen M, Mitchell I, Task LB, Liu Z, Kihneman J, Carroll AB, Terada LS, Nwariaku FE. Tumor cytotoxicity and endothelial Rac inhibition induced by TNP-470 in anaplastic thyroid cancer. Mol Cancer Ther. 2007;6:1329–37.

    Article  CAS  PubMed  Google Scholar 

  14. Kruger EA, Figg WD. TNP-470: an angiogenesis inhibitor in clinical development for cancer. Expert Opin Investig Drugs. 2005.

  15. Logothetis CJ, Wu KK, Finn LD, Daliani D, Figg W, Ghaddar H, Gutterman JU. Phase I trial of the angiogenesis inhibitor TNP-470 for progressive androgen-independent prostate cancer 1.

  16. Shin SJ, Ahn JB, Park KS, Lee YJ, Hong YS, Kim TW, Kim HR, Rha SY, Roh JK, Kim DH, Kim C, Chung HC. A phase Ib pharmacokinetic study of the anti-angiogenic agent CKD-732 used in combination with capecitabine and oxaliplatin (XELOX) in metastatic colorectal cancer patients who progressed on irinotecan-based chemotherapy. Invest New Drugs. 2012;30:672–80.

    Article  CAS  PubMed  Google Scholar 

  17. Shin SJ, Jeung HC, Ahn JB, Rha SY, Roh JK, Park KS, Kim DH, Kim C, Chung HC. A phase i pharmacokinetic and pharmacodynamic study of CKD-732, an antiangiogenic agent, in patients with refractory solid cancer. Invest New Drugs. 2010;28:650–8.

    Article  CAS  PubMed  Google Scholar 

  18. Kornienko A, Evidente A, Vurro M, Mathieu V, Cimmino A, Evidente M, van Otterlo WAL, Dasari R, Lefranc F, Kiss R. Towards a cancer drug of fungal origin. Med Res Rev. 2015;35:937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teicher BA, Alvarez Sotomayor E, Dong Huang Z. Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res. 1992.

  20. Benny O, Fainaru O, Adini A, Cassiola F, Bazinet L, Adini I, Pravda E, Nahmias Y, Koirala S, Corfas G, D’Amato RJ, Folkman J. An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat Biotechnol. 2008;26:799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kruger EA, Figg WD. TNP-470: An angiogenesis inhibitor in clinical development for cancer. Expert Opin Investig Drugs. 2000.

  22. Bhargava P, Marshall JL, Rizvi N, Dahut W, Yoe J, Figuera M, Phipps K, Ong VS, Kato A, Hawkins MJ. A phase I and pharmacokinetic study of TNP-470 administered weekly to patients with advanced cancer.

  23. Selvakumar P, Lakshmikuttyamma A, Dimmock JR, Sharma RK. Methionine aminopeptidase 2 and cancer. Biochim Biophys Acta - Rev Cancer. 2006;1765:148–54.

    Article  CAS  Google Scholar 

  24. Esa R, Steinberg E, Dror D, Schwob O, Khajavi M, Maoz M, Kinarty Y, Inbal A, Zick A, Benny O. The role of methionine aminopeptidase 2 in lymphangiogenesis. Int J Mol Sci. 2020;21.

  25. Selvakumar P, Lakshmikuttyamma A, Kanthan R, Kanthan SC, Dimmock JR, Sharma RK. High Expression of methionine aminopeptidase 2 in human colorectal adenocarcinomas. Clin Cancer Res. 2004;10:2771–5.

    Article  CAS  PubMed  Google Scholar 

  26. Frottin F, Bienvenut W V., Bignon J, Jacquet E, Jacome ASV, Dorsselaer A Van, Cianferani S, Carapito C, Meinnel T, Giglione C, Frottin F, Bienvenut W V., Bignon J, Jacquet E, Sebastian Vaca Jacome A, Van Dorsselaer A, Cianferani S, Carapito C, Meinnel T, Giglione C. MetAP1 and MetAP2 drive cell selectivity for a potent anti-cancer agent in synergy, by controlling glutathione redox state. Oncotarget. 2016;7:63306–23.

  27. Griffith EC, Zhuang SU, Niwayama S, Ramsay CA, Chang YH, Liu JO. Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2. Proc Natl Acad Sci U S A. 1998;95:15183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Lou P, Henkin J. Selective inhibition of endothelial cell proliferation by fumagillin is not due to differential expression of methionine aminopeptidases. J Cell Biochem. 2000;77.

  29. Datta B. MAPs and POEP of the roads from prokaryotic to eukaryotic kingdoms. Biochimie. 2000;82:95–107.

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Sheppard GS, Lou P, Kawai M, BaMaung N, Erickson SA, Tucker-Garcia L, Park C, Bouska J, Wang Y-C, Frost D, Tapang P, Albert DH, Morgan SJ, Morowitz M, Shusterman S, Maris JM, Lesniewski R, Henkin J. Tumor suppression by a rationally designed reversible inhibitor of methionine aminopeptidase-2. Cancer Res. 2003;63.

  31. Yeh JRJ, Mohan R, Crews CM. The antiangiogenic agent TNP-470 requires p53 and p21(CIP/WAF) for endothelial cell growth arrest. Proc Natl Acad Sci U S A. 2000;97:12782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, Brem H, Folkman J. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 1990 3486301 1990;348:555–57.

  33. Kusaka M, Sudo K, Fujita T, Marui S, Itoh F, Ingber D, Folkman J. Potent anti-angiogenic action of AGM-1470: comparison to the fumagillin parent. Biochem Biophys Res Commun. 1991;174:1070–6.

    Article  CAS  PubMed  Google Scholar 

  34. Sheen IS, Jeng KS, Jeng WJ, Jeng CJ, Wang YC, Gu SL, Tseng SY, Chu CM, Lin CH, Chang KM. Fumagillin treatment of hepatocellular carcinoma in rats: an in vivo study of antiangiogenesis. World J Gastroenterol. 2005;11:771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev. 2013;113:3516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Štimac A, Šekutor M, Mlinarić-Majerski K, Frkanec L, Frkanec R. Adamantane in drug delivery systems and surface recognition. Mol A J Synth Chem Nat Prod Chem. 2017;22.

  37. Walker JM, Hammond JBW, Kruger NJ. The bradford method for protein quantitation. In: New Protein Techniques. Humana Press; 2003. p. 25–32.

  38. Twelves C, Chmielowska E, Havel L, Popat S, Swieboda-Sadlej A, Sawrycki P, Bycott P, Ingrosso A, Kim S, Williams JA, Chen C, Olszanski AJ, de Besi P, Schiller JH. Randomised phase II study of axitinib or bevacizumab combined with paclitaxel/carboplatin as first-line therapy for patients with advanced non-small-cell lung cancer. Ann Oncol. 2014.

  39. Crinò L, Dansin E, Garrido P, Griesinger F, Laskin J, Pavlakis N, Stroiakovski D, Thatcher N, Tsai CM, Wu Y long, Zhou C. Safety and efficacy of first-line bevacizumab-based therapy in advanced non-squamous non-small-cell lung cancer (SAiL, MO19390): a phase 4 study. Lancet Oncol. 2010;11:733–40.

  40. Reck M, Von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, Manegold C. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. J Clin Oncol. 2009;27:1227–34.

    Article  CAS  PubMed  Google Scholar 

  41. Mousa SA, Davis PJ. Angiogenesis and anti-angiogenesis strategies in cancer. In: Anti-Angiogenesis Strategies in Cancer Therapeutics. 2017.

  42. Chen HX, Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol. 2009.

  43. Belcik JT, Qi Y, Kaufmann BA, Xie A, Bullens S, Morgan TK, Bagby SP, Kolumam G, Kowalski J, Oyer JA, Bunting S, Lindner JR. Cardiovascular and systemic microvasculareffects of anti-vascular endothelial growth factor therapy for cancer. J Am Coll Cardiol. 2012;60:618–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Datta R, Choudhury P, Ghosh A, Datta B. A Glycosylation site, 60SGTS63, of p67 is required for its ability to regulate the phosphorylation and activity of eukaryotic initiation factor 2α†. Biochemistry. 2003;42:5453–60.

    Article  CAS  PubMed  Google Scholar 

  45. Datta B, Datta R. Induction of apoptosis due to lowering the level of eukaryotic initiation factor 2-associated protein, p67, from mammalian cells by antisense approach. Exp Cell Res. 1999;246:376–83.

    Article  CAS  PubMed  Google Scholar 

  46. Bo H, Ghazizadeh M, Shimizu H, Kurihara Y, Egawa S, Moriyama Y, Tajiri T, Kawanami O. Effect of ionizing irradiation on human esophageal cancer cell lines by cDNA microarray gene expression analysis. J Nippon Med Sch. 2004;71:172–80.

    Article  CAS  PubMed  Google Scholar 

  47. Bradshaw RA, Yi E. Methionine aminopeptidases and angiogenesis. Essays Biochem. 2002;38:65–78.

    Article  CAS  PubMed  Google Scholar 

  48. Kudelka AP, Verschraegen CF, Loyer E. Complete remission of metastatic cervical cancer with the angiogenesis inhibitor TNP-470. New England Journal of Medicine. 1998 Apr 2;338(14):991-2.

  49. Cretton-Scott E, Placidi L, McClure H, Anderson DC, Sommadossi JP. Pharmacokinetics and metabolism of O-(chloroacetyl-carbamoyl) fumagillol (TNP-470, AGM-1470) in rhesus monkeys. Cancer Chemother Pharmacol. 1996;38:117–22.

    Article  PubMed  Google Scholar 

  50. Davies WL, Grunert RR, Haff RF, Mcgahen JW, Neumayer EM, Paulshock M, Watts JC, Wood TR, Hermann EC, Hoffmann CE. Antiviral activity of 1-adamantanamine (Amantadine). Science (80- ). 1964;144:862–63.

  51. Schwab RS, England AC, Poskanzer DC, Young RR. Amantadine in the treatment of Parkinson’s disease. JAMA. 1969;208:1168–70.

    Article  CAS  PubMed  Google Scholar 

  52. Li X, Chang YH. Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc Natl Acad Sci U S A. 1995;92:12357–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benita Y, Cao Z, Giallourakis C, Li C, Gardet A, Xavier RJ. Gene enrichment profiles reveal T-cell development, differentiation, and lineage-specific transcription factors including ZBTB25 as a novel NF-AT repressor. Blood. 2010;115:5376–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tucker LA, Zhang Q, Sheppard GS, Lou P, Jiang F, Mckeegan E, Lesniewski R, Davidsen SK, Bell RL, Wang J. Ectopic expression of methionine aminopeptidase-2 causes cell transformation and stimulates proliferation. Oncogene. 2008;27:3967–76.

    Article  CAS  PubMed  Google Scholar 

  55. Wang J, Tucker LA, Stavropoulos J, Zhang Q, Wang YC, Bukofzer G, Niquette A, Meulbroek JA, Barnes DM, Shen J, Bouska J, Donawho C, Sheppard GS, Bell RL. Correlation of tumor growth suppression and methionine aminopetidase-2 activity blockade using an orally active inhibitor. Proc Natl Acad Sci U S A. 2008;105:1838–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tucker LA, Zhang Q, Sheppard GS, Lou P, Jiang F, McKeegan E, Lesniewski R, Davidsen SK, Bell RL, Wang J. Ectopic expression of methionine aminopeptidase-2 causes cell transformation and stimulates proliferation. Oncogene. 2008 2728 2008;27:3967–76.

  57. Xia JL, Yang BH, Tang ZY, Sun FX, Xue Q, Gao DM. Inhibitory effect of the angiogenesis inhibitor TNP-470 on tumor growth and metastasis in nude mice bearing human hepatocellular carcinoma. J Cancer Res Clin Oncol. 1997;123:383–7.

    Article  CAS  PubMed  Google Scholar 

  58. Wassberg E, Påhlman S, Westlin JE, Christofferson R. The angiogenesis inhibitor TNP-470 reduces the growth rate of human neuroblastoma in nude rats. Pediatr Res. 1997 Mar;41(3):327–33.

  59. Karsch-Bluman A, Avraham S, Assayag M, Schwob O, Benny O. Encapsulated carbenoxolone reduces lung metastases. Cancers (Basel). 2019;11.

  60. Stern T, Kaner I, Laser Zer N, Shoval H, Dror D, Manevitch Z, Chai L, Brill-Karniely Y, Benny O. Rigidity of polymer micelles affects interactions with tumor cells. J Control Release. 2017;257:40–50.

    Article  CAS  PubMed  Google Scholar 

  61. Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, Ibbs M, Bliźniak R, Łuczewski Ł, Lamperska K. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14

  62. Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khoruzhenko AI. 2D- and 3D-cell culture. Biopolym Cell. 2011;27:17–24.

    Article  Google Scholar 

  64. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular Uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46:4218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The graphical abstract and illustrations were created using BioRender.

Funding

This study was supported by the Israel Foundation of Science (ISF) (No. 3011004240) and the Israel Ministry of Health (MOH) (grant agreement # 3011005737). The funders had no role in the study design, data collection and interpretation, or in the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Contributions

Rawnaq Esa: data curation, investigation, validation and writing — original draft. Eliana Steinberg: formal analyses and writing — review and editing. Arie Dagan: design and synthesis of derivates. Zhanna Yekhtin: animal experiments. Katerina Tischenko: FACS experiments and analyses. Ofra Benny: conceptualization, supervision, funding acquisition, resources and writing — original draft and review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ofra Benny.

Ethics declarations

Ethics approval

All institutional and national guidelines for the care and use of laboratory animals were followed. This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Institutional Ethics Committee (21–16453-4).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 655 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esa, R., Steinberg, E., Dagan, A. et al. Newly synthesized methionine aminopeptidase 2 inhibitor hinders tumor growth. Drug Deliv. and Transl. Res. 13, 1170–1182 (2023). https://doi.org/10.1007/s13346-022-01187-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01187-6

Keywords

Navigation