Skip to main content

Advertisement

Log in

Advanced triboelectric nanogenerator-driven drug delivery systems for targeted therapies

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In the current decade, remarkable efforts have been made to develop a self-regulated, on-demand and controlled release drug delivery system driven by triboelectric nanogenerators (TENGs). TENGs have great potential to convert biomechanical energy into electricity and are suitable candidates for self-powered drug delivery systems (DDSs) with exciting features such as small size, easy fabrication, biocompatible, high power output and economical. This review exclusively explains the development and implementation process of TENG-mediated, self-regulated, on-demand and targeted DDSs. It also highlights the recently used TENG-driven DDSs for cancer therapy, infected wounds healing, tissue regeneration and many other chronic disorders. Moreover, it summarises the crucial challenges that are needed to be addressed for their universal applications. Finally, a roadmap to advance the TENG-based drug delivery system developments is depicted for the targeted therapies and personalised healthcare.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brudno Y, Mooney DJ. On-demand drug delivery from local depots. J Control Release. 2015;219:8–17.

    Article  CAS  Google Scholar 

  2. Liu W, Song MS, Kong B, Cui Y. Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater. 2017;29:1603436.

    Article  Google Scholar 

  3. Ouyang Q, et al. Self-powered, on-demand transdermal drug delivery system driven by triboelectric nanogenerator. Nano Energy. 2019;62:610–9.

    Article  CAS  Google Scholar 

  4. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.

    Article  CAS  Google Scholar 

  5. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003.

    Article  CAS  Google Scholar 

  6. Yoon HJ, Kim SW. Nanogenerators to power implantable medical systems. Joule. 2020.

  7. Mathew AA, Chandrasekhar A, Vivekanandan SA. Review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach. Nano Energy. 2020;105566.

  8. Jao Y-T, et al. A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano Energy. 2018;50:513–20.

    Article  CAS  Google Scholar 

  9. Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater. 2013;25:5997–6038.

    Article  CAS  Google Scholar 

  10. Gao W, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature. 2016;529:509–14.

    Article  CAS  Google Scholar 

  11. Parida K, Xiong J, Zhou X, Lee PS. Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility. Nano Energy. 2019;59:237–57.

    Article  CAS  Google Scholar 

  12. Ryu H, et al. Sustainable direct current powering a triboelectric nanogenerator via a novel asymmetrical design. Energy Environ Sci. 2018;11:2057–63.

    Article  CAS  Google Scholar 

  13. Jung JH, et al. Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano. 2011;5:10041–6.

    Article  CAS  Google Scholar 

  14. An S, Sankaran A, Yarin AL. Natural biopolymer-based triboelectric nanogenerators via fast, facile, scalable solution blowing. ACS Appl Mater Interfaces. 2018;10:37749–59.

    Article  CAS  Google Scholar 

  15. Yang J, et al. Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Adv Energy Mater. 2014;4:1301322.

    Article  Google Scholar 

  16. Zhang X-S, Han M-D, Meng B, Zhang H-X. High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies. Nano Energy. 2015;11:304–22.

    Article  CAS  Google Scholar 

  17. Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC. Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE. 2008;96:1457–86.

    Article  Google Scholar 

  18. Li J, Long Y, Yang F, Wang X. Respiration-driven triboelectric nanogenerators for biomedical applications. Eco Mat. 2020;2.

  19. Zhang R, et al. Interaction of the human body with triboelectric nanogenerators. Nano Energy. 2019;57:279–92.

    Article  CAS  Google Scholar 

  20. Fan F-R, Tian Z-Q, Wang ZL. Flexible triboelectric generator. Nano Energy. 2012;1:328–34.

    Article  CAS  Google Scholar 

  21. Dagdeviren C, Li Z, Wang ZL. Energy harvesting from the animal/human body for self-powered electronics. Annu Rev Biomed Eng. 2017;19:85–108.

    Article  CAS  Google Scholar 

  22. Zhang R, et al. Harvesting triboelectricity from the human body using non-electrode triboelectric nanogenerators. Nano Energy. 2018;45:298–303.

    Article  CAS  Google Scholar 

  23. Chen J, et al. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat Energy. 2016;1:1–8.

    Article  CAS  Google Scholar 

  24. Liang X, et al. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv Func Mater. 2019;29:1807241.

    Article  CAS  Google Scholar 

  25. Xi F, et al. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy. 2019;61:1–9.

    Article  CAS  Google Scholar 

  26. Guo H, et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci Robot. 2018;3.

  27. Li J, Wang X. Research update: materials design of implantable nanogenerators for biomechanical energy harvesting. APL Mater. 2017;5: 073801.

    Article  Google Scholar 

  28. Ouyang H, et al. Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv Mater. 2017;29:1703456.

    Article  Google Scholar 

  29. Lin Z, et al. Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano. 2017;11:8830–7.

    Article  CAS  Google Scholar 

  30. Zhang C, Tang W, Han C, Fan F, Wang ZL. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv Mater. 2014;26:3580–91.

    Article  CAS  Google Scholar 

  31. Liu G, et al. Flexible drug release device powered by triboelectric nanogenerator. Adv Func Mater. 2020;30:1909886.

    Article  CAS  Google Scholar 

  32. Wu C, et al. Self-powered Iontophoretic transdermal drug delivery system driven and regulated by biomechanical motions. Adv Func Mater. 2020;30:1907378.

    Article  CAS  Google Scholar 

  33. Liu Z, et al. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv Mater. 2019;31:1807795.

    Article  Google Scholar 

  34. Majerus SJ, Garverick SL, Suster MA, Fletter PC, Damaser MS. Wireless, ultra-low-power implantable sensor for chronic bladder pressure monitoring. ACM J Emerg Technol Comput Syst. 2012;8:1–13.

    Article  Google Scholar 

  35. Ko WH. Early history and challenges of implantable electronics. ACM J Emerg Technol Comput Syst. 2012;8:1–9.

    Article  Google Scholar 

  36. Zheng Q, et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano. 2016;10:6510–8.

    Article  CAS  Google Scholar 

  37. Hu W, et al. Enhancing proliferation and migration of fibroblast cells by electric stimulation based on triboelectric nanogenerator. Nano Energy. 2019;57:600–7.

    Article  CAS  Google Scholar 

  38. Liu W, et al. Integrated charge excitation triboelectric nanogenerator. Nat Commun. 2019;10:1–9.

    Google Scholar 

  39. Wu C, Wang AC, Ding W, Guo H, Wang ZL. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater. 2019;9:1802906.

    Article  Google Scholar 

  40. Wu J, Wang X, Li H, Wang F, Hu Y. First-principles investigations on the contact electrification mechanism between metal and amorphous polymers for triboelectric nanogenerators. Nano Energy. 2019;63: 103864.

    Article  CAS  Google Scholar 

  41. Hosseini-Nassab N, Samanta D, Abdolazimi Y, Annes JP, Zare RN. Electrically controlled release of insulin using polypyrrole nanoparticles. Nanoscale. 2017;9:143–9.

    Article  CAS  Google Scholar 

  42. Ge J, Neofytou E, Cahill TJ III, Beygui RE, Zare RN. Drug release from electric-field-responsive nanoparticles. ACS Nano. 2012;6:227–33.

    Article  CAS  Google Scholar 

  43. Wang J, Zhou L, Zhang C, Wang ZL. Small-scale energy harvesting from environment by triboelectric nanogenerators. A guide to small-scale energy harvesting techniques. 2020.

  44. Wang ZL. Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 2015;176:447–58.

    Article  Google Scholar 

  45. Kim W-G, et al. Triboelectric nanogenerator: structure, mechanism, and applications. ACS Nano. 2021;15:258–87.

    Article  CAS  Google Scholar 

  46. Zhang H, Yao L, Quan L, Zheng X. Theories for triboelectric nanogenerators: a comprehensive review. Nanotechnol Rev. 2020;9:610–25.

    Article  Google Scholar 

  47. Chen H, et al. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 2020;13:1997–2018.

    Article  CAS  Google Scholar 

  48. Liu Z, et al. High-throughput and self-powered electroporation system for drug delivery assisted by microfoam electrode. ACS Nano. 2020;14:15458–67.

    Article  Google Scholar 

  49. Bok M, et al. Microneedles integrated with a triboelectric nanogenerator: an electrically active drug delivery system. Nanoscale. 2018;10:13502–10.

    Article  CAS  Google Scholar 

  50. Jiang W, et al. Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv Mater. 2018;30:1801895.

    Article  Google Scholar 

  51. Gooding DM, Kaufman GK. Tribocharging and the triboelectric series. Encyclopedia of Inorganic and Bioinorganic Chemistry 2021;1–14.

  52. Pan S, Zhang Z. Triboelectric effect: a new perspective on electron transfer process. J Appl Phys. 2017;122:144302.

    Article  Google Scholar 

  53. Yang L, Ma Z, Tian Y, Meng B, Peng Z. Progress on self-powered wearable and implantable systems driven by nanogenerators. Micromachines. 2021;12:666.

    Article  Google Scholar 

  54. Zhang H, et al. A theoretical approach for optimizing sliding-mode triboelectric nanogenerator based on multi-parameter analysis. Nano Energy. 2019;61:442–53.

    Article  CAS  Google Scholar 

  55. Liu Z, Li L. Self-powered drug-delivery systems based on triboelectric nanogenerator. Advanced Energy and Sustainability Research. 2021;2:2100013.

    Article  Google Scholar 

  56. Jeong S-H, et al. Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy. 2021;79:105463.

    Article  CAS  Google Scholar 

  57. Williams MW. Triboelectric charging in metal–polymer contacts—how to distinguish between electron and material transfer mechanisms. J Electrostat. 2013;71:53–4.

    Article  CAS  Google Scholar 

  58. Feng H, et al. Nanogenerator for biomedical applications. Adv Healthcare Mater. 2018;7:1701298.

    Article  Google Scholar 

  59. Wang ZL, Lin L, Chen J, Niu S, Zi Y. In Triboelectric nanogenerators. Springer; 2016;91–107.

  60. Wang H, Pastorin G, Lee C. Toward self-powered wearable adhesive skin patch with bendable microneedle array for transdermal drug delivery. Adv Sci. 2016;3:1500441.

    Article  Google Scholar 

  61. Yoon H-J, Kim S-W. Nanogenerators to power implantable medical systems. Joule. 2020;4:1398–407.

    Article  Google Scholar 

  62. Khandelwal G, Raj NPMJ, Kim S-J. Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today. 2020;33:100882.

    Article  CAS  Google Scholar 

  63. Liu Z, et al. Wearable and implantable triboelectric nanogenerators. Adv Func Mater. 2019;29:1808820.

    Article  Google Scholar 

  64. Sun J, et al. A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Adv Mater. 2021;33:2102765.

    Article  CAS  Google Scholar 

  65. Nie J, et al. Self-powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique. ACS Nano. 2018;12:1491–9.

    Article  CAS  Google Scholar 

  66. Li X, Tat T, Chen J. Triboelectric nanogenerators for self-powered drug delivery. Trends Chem. 2021.

  67. Alvarez-Figueroa M, Blanco-Mendez J. Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int J Pharm. 2001;215:57–65.

    Article  CAS  Google Scholar 

  68. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.

    Article  CAS  Google Scholar 

  69. Amjadi M, Sheykhansari S, Nelson BJ, Sitti M. Recent advances in wearable transdermal delivery systems. Adv Mater. 2018;30:1704530.

    Article  Google Scholar 

  70. Perez VL, Wirostko B, Korenfeld M, From S, Raizman M. Ophthalmic drug delivery using iontophoresis: recent clinical applications. J Ocul Pharmacol Ther. 2020;36:75–87.

    Article  CAS  Google Scholar 

  71. Roy S, Chakraborty T. In Advances and challenges in pharmaceutical technology. Elsevier; 2021;395–409.

  72. Nayak S, Suryawanshi S, Bhaskar V. Microneedle technology for transdermal drug delivery: applications and combination with other enhancing techniques. Journal of Drug Delivery and Therapeutics. 2016;6:65–83.

    Article  Google Scholar 

  73. Men Z, et al. Microneedle patch-assisted transdermal administration of recombinant hirudin for the treatment of thrombotic diseases. Int J Pharm. 2022;612:121332.

    Article  CAS  Google Scholar 

  74. Lafranceschina S, et al. Systematic review of irreversible electroporation role in management of locally advanced pancreatic cancer. Cancers. 2019;11:1718.

    Article  CAS  Google Scholar 

  75. Mahnič-Kalamiza S, Miklavčič D. In Pulsed electric fields technology for the food industry. Springer; 2022;107–141.

  76. Moir J, White S, French J, Littler P, Manas D. Systematic review of irreversible electroporation in the treatment of advanced pancreatic cancer. European Journal of Surgical Oncology (EJSO). 2014;40:1598–604.

    Article  CAS  Google Scholar 

  77. Escobar-Chávez JJ, Bonilla-Martínez D, Villegas-González MA, Revilla-Vázquez AL. Electroporation as an efficient physical enhancer for skin drug delivery. J Clin Pharmacol. 2009;49:1262–83.

    Article  Google Scholar 

  78. Zhao C, Cui X, Wu Y, Li Z. Recent progress of nanogenerators acting as self-powered drug delivery devices. Adv Sustain Syst. 2021;5:2000268.

    Article  CAS  Google Scholar 

  79. Yang C, et al. Nanowire-array-based gene electro-transfection system driven by human-motion operated triboelectric nanogenerator. Nano Energy. 2019;64:103901.

    Article  CAS  Google Scholar 

  80. Song P, et al. A self-powered implantable drug-delivery system using biokinetic energy. Adv Mater. 2017;29:1605668.

    Article  Google Scholar 

  81. Tang J, Liu T, Miao S, Cho Y. Emerging energy harvesting technology for electro/photo-catalytic water splitting application. Catalysts. 2021;11:142.

    Article  CAS  Google Scholar 

  82. Conta G, Libanori A, Tat T, Chen G, Chen J. Triboelectric nanogenerators for therapeutic electrical stimulation. Adv Mater. 2021;2007502.

  83. Al-Qallaf B, Das D. Optimizing microneedle arrays to increase skin permeability for transdermal drug delivery. Ann N Y Acad Sci. 2009;1161:83–94.

    Article  Google Scholar 

  84. Al-Qallaf B, Mori D, Olatunji L, Das DB, Cui Z. Transdermal drug delivery by microneedles: does skin metabolism matter? Int J Chem React Eng 2009;7.

  85. Donnelly R, Douroumis D. Microneedles for drug and vaccine delivery and patient monitoring. Drug Deliv Transl Res. 2015;5:311–2.

  86. Bok M, Zhao Z-J, Jeon S, Jeong J-H, Lim E. Ultrasonically and iontophoretically enhanced drug-delivery system based on dissolving microneedle patches. Sci Rep. 2020;10:1–10.

    Article  Google Scholar 

  87. Bian S, et al. High-throughput in situ cell electroporation microsystem for parallel delivery of single guide RNAs into mammalian cells. Sci Rep. 2017;7:1–13.

    Article  Google Scholar 

  88. Huang H, et al. An efficient and high-throughput electroporation microchip applicable for siRNA delivery. Lab Chip. 2011;11:163–72.

    Article  CAS  Google Scholar 

  89. Kim K, Lee WG. Electroporation for nanomedicine: a review. J Mater Chem B. 2017;5:2726–38.

    Article  CAS  Google Scholar 

  90. Ding X, et al. High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nature Biomed Eng. 2017;1:1–7.

    Article  Google Scholar 

  91. Yang G. Engineering of triboelectric-nanogenerator powered devices and lab-on-a-chip devices for biological applications Doctoral thesis. Singapore: Nanyang Technological University; 2019.

    Google Scholar 

  92. Atencia J, Beebe DJ. Controlled microfluidic interfaces. Nature. 2005;437:648–55.

    Article  CAS  Google Scholar 

  93. Hayes RA, Feenstra BJ. Video-speed electronic paper based on electrowetting. Nature. 2003;425:383–5.

    Article  CAS  Google Scholar 

  94. Zhong J, et al. Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy. 2013;2:491–7.

    Article  CAS  Google Scholar 

  95. Lin Y-Y, et al. Low voltage electrowetting-on-dielectric platform using multi-layer insulators. Sens Actuators B Chem. 2010;150:465–70.

    Article  CAS  Google Scholar 

  96. Nie J, et al. Long distance transport of microdroplets and precise microfluidic patterning based on triboelectric nanogenerator. Adv Mater Technol. 2019;4:1800300.

    Article  Google Scholar 

  97. Zhang D, et al. A smart superwetting surface with responsivity in both surface chemistry and microstructure. Angew Chem. 2018;130:3763–7.

    Article  Google Scholar 

  98. Wang H, et al. Triboelectric liquid volume sensor for self-powered lab-on-chip applications. Nano Energy. 2016;23:80–8.

    Article  CAS  Google Scholar 

  99. Zhang H, et al. Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy. 2013;2:1019–24.

    Article  CAS  Google Scholar 

  100. Wang X, Chen X, Iwamoto M. Recent progress in the development of portable high voltage source based on triboelectric nanogenerator. Smart Mater Struct. 2020.

  101. Yu B, et al. A host-coupling bio-nanogenerator for electrically stimulated osteogenesis. Biomaterials. 2021;120997.

  102. Yu B, Yu H, Huang T, Wang H, Zhu M. A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density. Nano Energy. 2018;48:464–70.

    Article  CAS  Google Scholar 

  103. Yan Y, et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials. 2019;190:97–110.

    Article  Google Scholar 

  104. Zheng Q, et al. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci Adv. 2016;2:e1501478.

    Article  Google Scholar 

  105. Cao X, Jie Y, Wang N, Wang ZL. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv Energy Mater. 2016;6:1600665.

    Article  Google Scholar 

  106. Zhang Y, et al. “Genetically engineered” biofunctional triboelectric nanogenerators using recombinant spider silk. Adv Mater. 2018;30:1805722.

    Article  Google Scholar 

  107. Zhang Y, Zhou Z, Tao TH. In 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). 25–27 (IEEE).

  108. Ali R, et al. Transdermal microneedles - a materials perspective. AAPS PharmSciTech. 2020;21:1–14.

    Article  Google Scholar 

  109. Takeuchi I, et al. Transdermal delivery of 40-nm silk fibroin nanoparticles. Colloids Surf B. 2019;175:564–8.

    Article  CAS  Google Scholar 

  110. Lee JW, Gadiraju P, Park J-H, Allen MG, Prausnitz MR. Microsecond thermal ablation of skin for transdermal drug delivery. J Control Release. 2011;154:58–68.

    Article  CAS  Google Scholar 

  111. Palanisamy S, Wang Y-M. Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans. 2019;48:9490–515.

    Article  CAS  Google Scholar 

  112. Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm. 2015;496:191–218.

    Article  CAS  Google Scholar 

  113. Zhao C, et al. Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator. Adv Func Mater. 2019;29:1808640.

    Article  CAS  Google Scholar 

  114. Hu C-MJ, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci. 2011;108:10980–5.

    Article  CAS  Google Scholar 

  115. Amjad MW, Kesharwani P, Amin MCIM, Iyer AK. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Prog Polym Sci. 2017;64:154–81.

    Article  CAS  Google Scholar 

  116. Ma K, et al. Ultrasound-activated Au/ZnO-based Trojan nanogenerators for combined targeted electro-stimulation and enhanced catalytic therapy of tumor. Nano Energy. 2021;106208.

  117. Zhao D, et al. Theranostic micelles combined with multiple strategies to effectively overcome multidrug resistance. Nanomedicine. 2018;13:1517–33.

    Article  CAS  Google Scholar 

  118. Du S, et al. Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: toward promoting infected wounds healing. Nano Energy. 2021;85:106004.

    Article  CAS  Google Scholar 

  119. Thrivikraman G, Boda SK, Basu B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: a tissue engineering perspective. Biomaterials. 2018;150:60–86.

    Article  CAS  Google Scholar 

  120. Lee DE, Ayoub N, Agrawal DK. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther. 2016;7:1–8.

    Article  Google Scholar 

  121. Yu B, et al. A host-coupling bio-nanogenerator for electrically stimulated osteogenesis. Biomaterials. 2021;276:120997.

    Article  CAS  Google Scholar 

  122. Pan S, Zhang Z. Fundamental theories and basic principles of triboelectric effect: a review. Friction. 2019;7:2–17.

    Article  Google Scholar 

  123. Zhu G, et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012;12:4960–5.

    Article  CAS  Google Scholar 

  124. Sinha-Ray S, Zhang Y, Yarin A, Davis S, Pourdeyhimi B. Solution blowing of soy protein fibers. Biomacromol. 2011;12:2357–63.

    Article  CAS  Google Scholar 

  125. Khansari S, Sinha-Ray S, Yarin A, Pourdeyhimi B. Stress-strain dependence for soy-protein nanofiber mats. J Appl Phys. 2012;111:044906.

    Article  Google Scholar 

  126. Bao Y, Wang R, Lu Y, Wu W. Lignin biopolymer based triboelectric nanogenerators. APL Mater. 2017;5: 074109.

    Article  Google Scholar 

  127. Tang W, et al. Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation. ACS Nano. 2015;9:7867–73.

    Article  CAS  Google Scholar 

  128. Zheng Q, et al. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv Mater. 2014;26:5851–6.

    Article  CAS  Google Scholar 

  129. Marois Y, Be M. Studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J Biomed Mater Res. 2001;58:467–77.

    Article  Google Scholar 

  130. Hu S, et al. Superhydrophobic liquid–solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. ACS Appl Mater Interfaces. 2020;12:40021–30.

    Article  CAS  Google Scholar 

  131. Choi D, Yoo D, Cha KJ, La M, Kim DS. Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy. 2017;36:250–9.

    Article  CAS  Google Scholar 

  132. Cho H, et al. Toward sustainable output generation of liquid–solid contact triboelectric nanogenerators: the role of hierarchical structures. Nano Energy. 2019;56:56–64.

    Article  CAS  Google Scholar 

  133. Liu W, et al. Surface modification of a polylactic acid nanofiber membrane by zeolitic imidazolate framework-8 from secondary growth for drug delivery. J Mater Sci. 2020;55:15275–87.

    Article  CAS  Google Scholar 

  134. Torres FG, De-la-Torre GE. Polysaccharide-based triboelectric nanogenerators: a review. Carbohydr Polym. 2020;117055.

  135. Shi Q, Wang H, Wang T, Lee C. Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications. Nano Energy. 2016;30:450–9.

    Article  CAS  Google Scholar 

  136. Xu L, Yang Y, Mao Y, Li Z. Self‐powerbility in electrical stimulation drug delivery system. Adv Mater Technol 2021;2100055.

  137. Zheng L, et al. Dual-stimulus smart actuator and robot hand based on a vapor-responsive PDMS film and triboelectric nanogenerator. ACS Appl Mater Interfaces. 2019;11:42504–11.

    Article  CAS  Google Scholar 

  138. Peng Z, et al. A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting. Nano Energy. 2021;85:106021.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to M. A. Parvez Mahmud.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have agreed to the publication of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikram, M., Mahmud, M.A.P. Advanced triboelectric nanogenerator-driven drug delivery systems for targeted therapies. Drug Deliv. and Transl. Res. 13, 54–78 (2023). https://doi.org/10.1007/s13346-022-01184-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01184-9

Keywords

Navigation