Skip to main content

Advertisement

Log in

Development of doxorubicin hydrochloride–loaded whey protein nanoparticles and its surface modification with N-acetyl cysteine for triple-negative breast cancer

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Limited targeted therapies are available for triple-negative breast cancer (TNBC). Thus, the current research focused on developing a targeted protein nanoparticle for TNBC. First, the doxorubicin hydrochloride (Dox)–loaded genipin-crosslinked whey protein nanoparticles (WD) were prepared and optimised by the QbD method using BBD. The hydrodynamic diameter of WD was found to be 364.38 ± 49.23 nm, zeta potential −27.59 ± 1.038 mV, entrapment 63.03 ± 3.625% and Dox loading was found to be 1.419 ± 0.422%. The drug recovery after 18 months of storage was 69%. Then, it was incubated with NAC to obtain modified WD (CyWD). WD followed first-order release kinetics, whereas CyWD followed the Higuchi model. Hemagglutination and hemolysis were not found qualitatively in WD and CyWD. Upon injecting the nanoformulations to 4T1-induced mice, the highest efficacy was found to be in CyWD followed by WD and Dox injection. Upon histopathological observance, it was found that the CyWD group gave the most significant damage to the 4T1 tumour tissue. Thus, NAC-modified protein nanoparticles carrying chemotherapeutic agents can be an excellent targeted therapeutic system against TNBC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data and resource materials are available with the correspondence and first author.

Abbreviations

ATCC:

American Type Culture Collection

BBD:

Box Behnken Design

CPCSEA:

Committee for the Purpose of Control and Supervision of Experiments on Animals

DMSO:

Dimethyl sulfoxide

Dox:

Doxorubicin hydrochloride

EDTA:

Ethylenediamine tetraacetic acid

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

MWCO:

Molecular weight cut-off

MTT:

3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide

NCCS:

National Centre for Cell Science

PBS:

Phosphate buffered saline

QbD:

Quality by Design

RBC:

Red blood cells

TNBC:

Triple-negative breast cancer

References

  1. Hwang S-Y, Park S, Kwon Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther. 2019;199:30–57. https://doi.org/10.1016/j.pharmthera.2019.02.006.

    Article  CAS  PubMed  Google Scholar 

  2. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–31. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  CAS  Google Scholar 

  3. Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: emerging carriers for drug delivery. Saudi Pharmaceutical Journal. 2011;19(3):129–41. https://doi.org/10.1016/j.jsps.2011.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein nanoparticles: promising platforms for drug delivery applications. ACS Biomater Sci Eng. 2018;4(12):3939–61. https://doi.org/10.1021/acsbiomaterials.8b01098.

    Article  CAS  PubMed  Google Scholar 

  5. Patel S. Emerging trends in nutraceutical applications of whey protein and its derivatives. J Food Sci Technol. 2015;52(11):6847–58. https://doi.org/10.1007/s13197-015-1894-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Souza FN, Gebara C, Ribeiro MCE, Chaves KS, Gigante ML, Grosso CRF. Production and characterization of microparticles containing pectin and whey proteins. Food Res Int. 2012;49(1):560–6. https://doi.org/10.1016/j.foodres.2012.07.041.

    Article  CAS  Google Scholar 

  7. Corrochano AR, Buckin V, Kelly PM, Giblin L. Invited review: whey proteins as antioxidants and promoters of cellular antioxidant pathways. J Dairy Sci. 2018;101(6):4747–61. https://doi.org/10.3168/jds.2017-13618.

    Article  CAS  PubMed  Google Scholar 

  8. Kanoujia J, Singh M, Singh P, Parashar P, Tripathi CB, Arya M, et al. Genipin crosslinked soy-whey based bioactive material for atorvastatin loaded nanoparticles: preparation, characterization and in vivo antihyperlipidemic study. RSC Adv. 2016;6(96):93275–87. https://doi.org/10.1039/C6RA16830B.

    Article  CAS  Google Scholar 

  9. Wei Y, Zhan X, Dai L, Zhang L, Mao L, Yuan F, et al. Formation mechanism and environmental stability of whey protein isolate-zein core-shell complex nanoparticles using the pH-shifting method. LWT. 2020;110605.

  10. Giroux HJ, Britten M. Encapsulation of hydrophobic aroma in whey protein nanoparticles. J Microencapsul. 2011;28(5):337–43. https://doi.org/10.3109/02652048.2011.569761.

    Article  CAS  PubMed  Google Scholar 

  11. Hortobágyi GN. Anthracyclines in the treatment of cancer. An overview Drugs. 1997;54(Suppl 4):1–7. https://doi.org/10.2165/00003495-199700544-00003.

    Article  PubMed  Google Scholar 

  12. Reddy LH, Murthy R. Pharmacokinetics and biodistribution studies of doxorubicin loaded poly (butyl cyanoacrylate) nanoparticles synthesized by two different techniques. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2004;148(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hasegawa M, Takahashi H, Rajabi H, Alam M, Suzuki Y, Yin L et al. Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget. 2016;7(11).

  14. Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620. https://doi.org/10.1007/s13238-020-00789-5.

    Article  CAS  PubMed  Google Scholar 

  15. Alothaim T, Charbonneau M, Tang X. HDAC6 inhibitors sensitize non-mesenchymal triple-negative breast cancer cells to cysteine deprivation. Sci Rep. 2021;11(1):10956. https://doi.org/10.1038/s41598-021-90527-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prajapati R, Garcia-Garrido E, Somoza Á. Albumin-based nanoparticles for the delivery of doxorubicin in breast cancer. Cancers. 2021;13(12):3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kayani Z, Bordbar A-K, Firuzi O. Novel folic acid-conjugated doxorubicin loaded β-lactoglobulin nanoparticles induce apoptosis in breast cancer cells. Biomed Pharmacother. 2018;107:945–56. https://doi.org/10.1016/j.biopha.2018.08.047.

    Article  CAS  PubMed  Google Scholar 

  18. Morshed RA, Muroski ME, Dai Q, Wegscheid ML, Auffinger B, Yu D, et al. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol Pharm. 2016;13(6):1843–54. https://doi.org/10.1021/acs.molpharmaceut.6b00004.

    Article  CAS  PubMed  Google Scholar 

  19. Prados J, Melguizo C, Ortiz R, Vélez C, Alvarez PJ, Arias JL, et al. Doxorubicin-loaded nanoparticles: new advances in breast cancer therapy. Anticancer Agents Med Chem. 2012;12(9):1058–70. https://doi.org/10.2174/187152012803529646.

    Article  CAS  PubMed  Google Scholar 

  20. Singh S, Maurya P, Saraf SA. Cutting edge targeting strategies utilizing nanotechnology in breast cancer therapy. Frontiers in Anti-Cancer Drug Discovery 2019;10:180.

  21. Singh S, Singh P, Mishra N, Maurya P, Singh N, Nisha R, et al. Advanced drug delivery systems in breast cancer. Advanced Drug Delivery Systems in the Management of Cancer. Elsevier; 2021;107–26.

  22. Mohamed AI, Abd-Motagaly AME, Ahmed OAA, Amin S, Mohamed Ali AI. Investigation of drug–polymer compatibility using chemometric-assisted UV-spectrophotometry. Pharmaceutics. 2017;9(1):7.

    Article  PubMed Central  Google Scholar 

  23. Teng Z, Luo Y, Wang Q. Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation. J Agric Food Chem. 2012;60(10):2712–20. https://doi.org/10.1021/jf205238x.

    Article  CAS  PubMed  Google Scholar 

  24. Guideline I. Stability testing of new drug substances and products. Q1A (R2), current step. 2003;4:1–24.

  25. Li Y, Angelova A, Hu F, Garamus VM, Peng C, Li N, et al. PH responsiveness of hexosomes and cubosomes for combined delivery of Brucea javanica oil and doxorubicin. Langmuir. 2019;35(45):14532–42.

    Article  CAS  PubMed  Google Scholar 

  26. Tripathi CB, Parashar P, Arya M, Singh M, Kanoujia J, Kaithwas G, et al. QbD-based development of α-linolenic acid potentiated nanoemulsion for targeted delivery of doxorubicin in DMBA-induced mammary gland carcinoma: in vitro and in vivo evaluation. Drug Deliv Transl Res. 2018;8(5):1313–34. https://doi.org/10.1007/s13346-018-0525-5.

    Article  CAS  PubMed  Google Scholar 

  27. Akbaribazm M, Khazaei MR, Khazaei M. Trifolium pratense L.(red clover) extract and doxorubicin synergistically inhibits proliferation of 4T1 breast cancer in tumor‐bearing BALB/c mice through modulation of apoptosis and increase antioxidant and anti‐inflammatory related pathways. Food Science & Nutrition. 2020;8(8):4276–90.

  28. Kahoush M, Behary N, Cayla A, Mutel B, Guan J, Nierstrasz V. Genipin-mediated immobilization of glucose oxidase enzyme on carbon felt for use as heterogeneous catalyst in sustainable wastewater treatment. J Environ Chem Eng. 2021;9. https://doi.org/10.1016/j.jece.2021.105633

  29. Michel P, Abedinzadeh Z, Grajcar L, Baron M. Spectroscopic study of N-acetylcysteine and N-acetylcystine/hydrogen peroxide complexation. Chem Phys. 1998;228:279–91. https://doi.org/10.1016/S0301-0104(97)00337-6.

    Article  Google Scholar 

  30. Shen H, Gao Q, Ye Q, Yang S, Wu Y, Huang Q, et al. Peritumoral implantation of hydrogel-containing nanoparticles and losartan for enhanced nanoparticle penetration and antitumor effect. Int J Nanomedicine. 2018;13:7409–26. https://doi.org/10.2147/ijn.s178585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang X, Ding CK, Wu J, Sjol J, Wardell S, Spasojevic I, et al. Cystine addiction of triple-negative breast cancer associated with EMT augmented death signaling. Oncogene. 2017;36(30):4235–42. https://doi.org/10.1038/onc.2016.394.

    Article  CAS  PubMed  Google Scholar 

  32. Bounous G. Whey protein concentrate (WPC) and glutathione modulation in cancer treatment. Anticancer Res. 2000;20(6c):4785–92.

    CAS  PubMed  Google Scholar 

  33. Kaushik D, Bansal G. Four new degradation products of doxorubicin: an application of forced degradation study and hyphenated chromatographic techniques. Journal of pharmaceutical analysis. 2015;5(5):285–95. https://doi.org/10.1016/j.jpha.2015.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim A, Ng WB, Bernt W, Cho N-J. Validation of size estimation of nanoparticle tracking analysis on polydisperse macromolecule assembly. Sci Rep. 2019;9(1):2639. https://doi.org/10.1038/s41598-019-38915-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanoujia J, Singh M, Singh P, Saraf SA. Novel genipin crosslinked atorvastatin loaded sericin nanoparticles for their enhanced antihyperlipidemic activity. Mater Sci Eng C. 2016;69:967–76. https://doi.org/10.1016/j.msec.2016.08.011.

    Article  CAS  Google Scholar 

  36. Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep. 2017;7(1):44735. https://doi.org/10.1038/srep44735.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Persi E, Duran-Frigola M, Damaghi M, Roush WR, Aloy P, Cleveland JL, et al. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat Commun. 2018;9(1):2997. https://doi.org/10.1038/s41467-018-05261-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. England CG, Miller MC, Kuttan A, Trent JO, Frieboes HB. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. Eur J Pharm Biopharm. 2015;92:120–9. https://doi.org/10.1016/j.ejpb.2015.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Delneste Y, Jeannin P, Potier L, Romero P, Bonnefoy J-Y. N-acetyl-L-cysteine exhibits antitumoral activity by increasing tumor necrosis factor α-dependent T-cell cytotoxicity. Blood. 1997;90(3):1124–32. https://doi.org/10.1182/blood.V90.3.1124.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Deshpande Labs, Bhopal, India for in-vivo studies (CPCSEA approved); University Sophisticated Instrumentation Centre-Babasaheb Bhimrao Ambedkar University: Confocal microscopy; Dr Dinesh Kumar and his scholars (Ritu Raj and Umesh Kumar), Center of Biomedical Research, Lucknow, India – centrifuge and lyophilisation.

Funding

Indian Council of Medical Research (No. 3/2/2/42/2020-NCD-III), dated 17.06.2021, awarded to Samipta Singh (SRF) and Prof. Shubhini A. Saraf (Principal Investigator). UGC-Non NET (2016–2020) and ICMR-SRF (2021 onwards) fellowship for financial support to the first author.

Author information

Authors and Affiliations

Authors

Contributions

Prof. Shubhini A. Saraf designed and supervised; Samipta Singh: wrote and performed experiments; Priyanka Maurya, Raquibun Nisha, Priya Singh, Soniya Rani and Nidhi Mishra: research co-ordination.

Corresponding author

Correspondence to Shubhini A. Saraf.

Ethics declarations

Ethics approval

Animals utilised in the study were approved by the Institutional Animal Ethics Committee (IAEC no. DL/SS/11/20/615).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10980 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Maurya, P., Rani, S. et al. Development of doxorubicin hydrochloride–loaded whey protein nanoparticles and its surface modification with N-acetyl cysteine for triple-negative breast cancer. Drug Deliv. and Transl. Res. 12, 3047–3062 (2022). https://doi.org/10.1007/s13346-022-01169-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01169-8

Keywords

Navigation