Skip to main content

Advertisement

Log in

Doxorubicin-loaded nanostructured lipid carriers functionalized with folic acid against MCF-7 breast cancer cell line

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX) is used in chemotherapy for the treatment of breast cancer (BC), however with several side effects. Nanostructured lipid carriers (NLCs) were developed from a mixture of surfactants, thermoresponsive and cationic quaternary ammonium, such as pluronic F-127 (PF-127-FA) and cetrimonium bromide (CTAB), respectively, and functionalized with folic acid as a strategy to target BC cells. This research aimed to develop NLC functionalized with folic acid containing DOX, directing its activity against BC cells (MCF-7). The NLCs obtained by the fusion-emulsification technique with (NLC +) and without (NLC-) cetrimonium bromide were developed and characterized to verify the guarantee of cationic or anionic charge. The results of dynamic light scattering sizes and scanning electron microscopy varied between 124 and 180 nm and, spherical morphology. Polydispersity < 0.3, indicating low polydispersity. Zeta potential revealed values between 22 and 13.2 for NLC + and -12.2 and -17 for NLC-. The encapsulation efficiency was 79% and 102% for NLC + and NLC-, respectively. The release profile was 100% after 10 h for DOX-NLC, while commercial DOX ≤ 30 min. Cell viability demonstrates that NLC- has higher cytotoxicity (87%) compared to commercial DOX (54%) (46 µM). NLC + with or without DOX increases greater toxicity (~ 90%). It is possible to conclude that NLCs have characteristics that point them as a potential alternative for preclinical studies in vivo, to elucidate their toxicity and antitumor activities.

Graphical Abstract

As an alternative for the treatment of breast cancer, nanostructured lipid carriers containing doxorubicin functionalized with folic acid showed promising characteristics, such as high encapsulation index, high cytotoxicity to the target tissue and improved release when compared to commercial DOX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akram M et al (2017) Awareness and current knowledge of breast cancer. Biol Res 50(1):1–23. https://doi.org/10.1186/s40659-017-0140-9

    Article  CAS  Google Scholar 

  2. Sun YS et al (2017) Risk factors and preventions of breast cancer. Int J Biol Sci 13(11):1387–1397. https://doi.org/10.7150/ijbs.21635

    Article  CAS  Google Scholar 

  3. Waks AG, Winer E (2019) P (2019) Breast Cancer Treatment: A Review. JAMA – J Am Med Assoc 321(3):288–300. https://doi.org/10.1001/jama.2018.19323

    Article  CAS  Google Scholar 

  4. Wang L (2017) Early diagnosis of breast cancer. Sensors (Switzerland) 17(7):1572. https://doi.org/10.3390/s17071572

    Article  CAS  Google Scholar 

  5. Onu (2020) World Cancer Report for cancer prevention Cancer research. Lyon: [s.n.]. v. 199

  6. Liyanage PY et al (1871) (2019) Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer 2:419–433. https://doi.org/10.1016/j.bbcan.2019.04.006

    Article  CAS  Google Scholar 

  7. Oshiro-Junior JA et al (2020) Phthalocyanine-loaded nanostructured lipid carriers functionalized with folic acid for photodynamic therapy. Mater Sci Eng C 108:110462. https://doi.org/10.1016/j.msec.2019.110462

    Article  CAS  Google Scholar 

  8. Lyman GH et al (2018) Integrative therapies during and after breast cancer treatment: ASCO endorsement of the SIO clinical practice guideline. J Clin Oncol 36(25):2647–2655. https://doi.org/10.1200/JCO.2018.79.2721

    Article  CAS  Google Scholar 

  9. Lovitt CJ, Shelper TB, Avery VM (2018) Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer 18(1):1–11. https://doi.org/10.1186/s12885-017-3953-6

    Article  CAS  Google Scholar 

  10. Cagel M et al (2017) Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discovery Today 22(2):270–281. https://doi.org/10.1016/j.drudis.2016.11.005

    Article  CAS  Google Scholar 

  11. Mitry MA, Edwards JG (2016) Doxorubicin induced heart failure: Phenotype and molecular mechanisms. IJC Heart Vasc 10:17–24. https://doi.org/10.1016/j.ijcha.2015.11.004

    Article  Google Scholar 

  12. Franco YL, Vaidya TR, Ait-Oudhia S (2018) Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer: Targets and Therapy 10:131–141. https://doi.org/10.2147/BCTT.S170239

    Article  CAS  Google Scholar 

  13. Meisami AH et al (2022) Self-propelled micro/nanobots: A new insight into precisely targeting cancerous cells through intelligent and deep cancer penetration. Eur J Pharmacol 926:1–15. https://doi.org/10.1016/j.ejphar.2022.175011

    Article  CAS  Google Scholar 

  14. Mosleh-Shirazi S et al (2021) Renal clearable nanoparticles: An expanding horizon for improving biomedical imaging and cancer therapy. Mater Today Commun 26:1–16. https://doi.org/10.1016/j.mtcomm.2021.102064

    Article  CAS  Google Scholar 

  15. BI, D. et al (2019) A comparative study of polydopamine modified and conventional chemical synthesis method in doxorubicin liposomes form the aspect of tumor targeted therapy. Int J Pharm 559(151):76–85. https://doi.org/10.1016/j.ijpharm.2019.01.033

    Article  CAS  Google Scholar 

  16. Luo R et al (2017) Distinct biodistribution of doxorubicin and the altered dispositions mediated by different liposomal formulations. Int J Pharm 519(1–2):1–10. https://doi.org/10.1016/j.ijpharm.2017.01.002

    Article  CAS  Google Scholar 

  17. Mikolajczyk A et al (2019) Release of doxorubicin from its liposomal coating via high intensity ultrasound. Mol Clin Oncol 11(5):483–487. https://doi.org/10.3892/mco.2019.1917

    Article  CAS  Google Scholar 

  18. Tapeinos C, Battaglini M, Ciofani G (2017) Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 264:306–332. https://doi.org/10.1016/j.jconrel.2017.08.033

    Article  CAS  Google Scholar 

  19. Fong YT, Chen CH, Chen JP (2017) Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials 7(11):1–24. https://doi.org/10.3390/nano7110388

    Article  CAS  Google Scholar 

  20. Poonia N et al (2019) Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: Systematic development, characterization and pharmacokinetic evaluation. Colloids Surf, B 181:756–766. https://doi.org/10.1016/j.colsurfb.2019.06.004

    Article  CAS  Google Scholar 

  21. Iwasaki T et al (2009) Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 30(4):660–668. https://doi.org/10.1016/j.peptides.2008.12.019

    Article  CAS  Google Scholar 

  22. Lin J, Chen J, Huang S, Ko J, Wang Y, Chen T, Wang L (2009) Folic acid–pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials 30(28):5114–5124. https://doi.org/10.1016/j.biomaterials.2009.06.004

    Article  CAS  Google Scholar 

  23. Sato MR et al (2017) Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des Dev Ther 11:909–921. https://doi.org/10.2147/DDDT.S127048

    Article  CAS  Google Scholar 

  24. Li Z et al (2015) pH-sensitive nanoparticles of poly(L-histidine)-poly(lactide-co-glycolide)-tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomater 11(1):137–150. https://doi.org/10.1016/j.actbio.2014.09.014

    Article  CAS  Google Scholar 

  25. Zhang R-Y et al (2018) Folic acid modified Pluronic F127 coating Ag2S quantum dot for photoacoustic imaging of tumor cell-targeting. Nanotechnology 29:055101. https://doi.org/10.1088/1361-6528/aa9acc

    Article  CAS  Google Scholar 

  26. Managa M et al (2018) Incorporation of metal free and Ga 5,10,15,20-tetrakis(4 bromophenyl) porphyrin into Pluronic F127-folic acid micelles. J Lumin 194:739–746. https://doi.org/10.1016/j.jlumin.2017.09.045

    Article  CAS  Google Scholar 

  27. Li Z et al (2020) Novel Folated Pluronic F127 Modified Liposomes for Delivery of Curcumin: Preparation, Release and Cytotoxicity. J Microencapsul 37(3):220–229. https://doi.org/10.1080/02652048.2020.1720030

    Article  CAS  Google Scholar 

  28. Bansal M et al (2018) Chemopreventive Role of Dietary Phytochemicals in Colorectal Cancer. Adv Mol Toxicol 12:69–121. https://doi.org/10.1016/B978-0-444-64199-1.00004-X

    Article  CAS  Google Scholar 

  29. Bahari LAS, Hamishehkar, H (2016) The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; A comparative literature review. Adv Pharmaceut Bull, 6(2):143–151. https://doi.org/10.15171/apb.2016.021

  30. Kang H et al (2020) Size-Dependent EPR Effect of Polymeric Nanoparticles on Tumor Targeting. Adv Healthcare Mater 9(1):8–15. https://doi.org/10.1002/adhm.201901223

    Article  CAS  Google Scholar 

  31. Danaei M et al (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2):1–17. https://doi.org/10.3390/pharmaceutics10020057

    Article  CAS  Google Scholar 

  32. Huang R et al (2018) Cell penetrating peptides functionalized gambogic acid-nanostructured lipid carrier for cancer treatment. Drug Delivery 25(1):757–765. https://doi.org/10.1080/10717544.2018.1446474

    Article  CAS  Google Scholar 

  33. Barros RM et al (2020) Physicochemical Characterization of Bioactive Compounds in Nanocarriers. Curr Pharm Des 26:1–11. https://doi.org/10.2174/1381612826666200310144533

    Article  CAS  Google Scholar 

  34. Brasil, Ministério Da Saúde (2017) Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada - RDC no 166, de 24 de julho de 2017. Diário Ofical da União, p. 1–21.

  35. Darge, HF et al (2021) Multifunctional drug-loaded micelles encapsulated in thermo-sensitive hydrogel for in vivo local cancer treatment: Synergistic effects of anti-vascular and immuno-chemotherapy. Chem Eng J, 406:126879. https://doi.org/10.1016/j.cej.2020.126879

  36. Jiang T et al (2020) Doxorubicin Encapsulated in TPGS-Modified 2D-Nanodisks Overcomes Multidrug Resistance. Chem Eur J 26(11):2470–3247. https://doi.org/10.1002/chem.201905097

    Article  CAS  Google Scholar 

  37. Mohammadi M, Arabi L, Alibolandi M (2020) Doxorubicin-loaded composite nanogels for cancer treatment. J Controlled Release, 328:171–191https://doi.org/10.1016/j.jconrel.2020.08.033

  38. Tang J et al (2018) Nucleosome-inspired nanocarrier obtains encapsulation efficiency enhancement and side effects reduction in chemotherapy by using fullerenol assembled with doxorubicin. Biomaterials 167:205–215. https://doi.org/10.1016/j.biomaterials.2018.03.015

    Article  CAS  Google Scholar 

  39. Thelu HVP et al (2018) Size controllable DNA nanogels from the self-assembly of DNA nanostructures through multivalent host-guest interactions. Nanoscale 10(1):222–230. https://doi.org/10.1039/C7NR06985E

    Article  CAS  Google Scholar 

  40. Yang, B (2020) Preclinical study of Doxorubicin-loaded liposomal drug delivery for the treatment of head and neck cancer: Optimization by Box-Behnken statistical design. Acta Biochimica Polonica, 67(2):149–155. https://doi.org/10.18388/abp.2020_5142

  41. Zhao Y et al (2013) A simple way to enhance Doxil® therapy: Drug release from liposomes at the tumor site by amphiphilic block copolymer. J Control Release 168(1):61–69. https://doi.org/10.1016/j.jconrel.2013.02.026

    Article  CAS  Google Scholar 

  42. Ito E et al (2009) Potential use of cetrimonium bromide as an apoptosis-promoting anticancer agent for head and neck cancer. Mol Pharmacol 76(5):969–983. https://doi.org/10.1124/mol.109.055277

    Article  CAS  Google Scholar 

  43. Tang M et al (2020) Cetyltrimethylammonium chloride-loaded mesoporous silica nanoparticles as a mitochondrion-targeting agent for tumor therapy. RSC Adv 10(29):17050–17057. https://doi.org/10.1039/D0RA02023K

    Article  CAS  Google Scholar 

  44. Wu TK et al (2019) Cetrimonium Bromide Inhibits Cell Migration and Invasion of Human Hepatic SK-HEP-1 Cells through Modulating the Canonical and Non-canonical TGF-β Signaling Pathways. Anticancer Research, 39(7):3621–3631. https://doi.org/10.21873/anticanres.13510

  45. Rowe RC, Sheskey PJ, MEQ (2015) Handbook of Pharmaceutical Excipients. Alpha 6:257–262

Download references

Funding

This research was funded by the Coordination for the Improvement of Higher Education Personnel–Brazil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Augusto Oshiro Junior.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 715 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, K.M.N., Barros, R.M., Jorge, E.O. et al. Doxorubicin-loaded nanostructured lipid carriers functionalized with folic acid against MCF-7 breast cancer cell line. J Nanopart Res 25, 56 (2023). https://doi.org/10.1007/s11051-023-05704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05704-7

Keyword

Navigation