Skip to main content

Advertisement

Log in

Modelling the impact of nucleolin expression level on the activity of F3 peptide-targeted pH-sensitive pegylated liposomes containing doxorubicin

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Strategies targeting nucleolin have enabled a significant improvement in intracellular bioavailability of their encapsulated payloads. In this respect, assessment of the impact of target cell heterogeneity and nucleolin homology across species (structurally and functionally) is of major importance. This work also aimed at mathematically modelling the nucleolin expression levels at the cell membrane, binding and internalization of pH-sensitive pegylated liposomes encapsulating doxorubicin and functionalized with the nucleolin-binding F3 peptide (PEGASEMP), and resulting cytotoxicity against cancer cells from mouse, rat, canine, and human origin. Herein, it was shown that nucleolin expression levels were not a limitation on the continuous internalization of F3 peptide-targeted liposomes, despite the saturable nature of the binding mechanism. Modeling enabled the prediction of nucleolin-mediated total doxorubicin exposure provided by the experimental settings of the assessment of PEGASEMP’s impact on cell death. The former increased proportionally with nucleolin-binding sites, a measure relevant for patient stratification. This pattern of variation was observed for the resulting cell death in nonsaturating conditions, depending on the cancer cell sensitivity to doxorubicin. This approach differs from standard determination of cytotoxic concentrations, which normally report values of incubation doses rather than the actual intracellular bioactive drug exposure. Importantly, in the context of development of nucleolin-based targeted drug delivery, the structural nucleolin homology (higher than 84%) and functional similarity across species presented herein, emphasized the potential to use toxicological data and other metrics from lower species to infer the dose for a first-in-human trial.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Fonseca NA, Moura V, Colelli F, Pesce D, Cardile F, Pisano C, et al. Targeting nucleolin with doxorubicin-containing nanoparticle induces a significant tumor growth inhibition in an orthotopic animal model of standard of care-resistant mesothelioma. Cancer Res. 2017;77:5155.

    Article  Google Scholar 

  2. Fonseca NA, Gregorio AC, Valerio-Fernandes A, Simoes S, Moreira JN. Bridging cancer biology and the patients’ needs with nanotechnology-based approaches. Cancer Treat Rev. 2014;40:626–35.

    Article  CAS  PubMed  Google Scholar 

  3. Srinivasarao M, Low PS. Ligand-targeted drug delivery. Chem Rev. 2017;117:12133–64.

    Article  CAS  PubMed  Google Scholar 

  4. Hendriks BS, Klinz SG, Reynolds JG, Espelin CW, Gaddy DF, Wickham TJ. Impact of tumor HER2/ERBB2 expression level on HER2-targeted liposomal doxorubicin-mediated drug delivery: multiple low-affinity interactions lead to a threshold effect. Mol Cancer Ther. 2013;12:1816–28.

    Article  CAS  PubMed  Google Scholar 

  5. Munster P, Krop IE, LoRusso P, Ma C, Siegel BA, Shields AF, et al. Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: a phase 1 dose-escalation study. Br J Cancer. 2018;119:1086–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gregorio AC, Lacerda M, Figueiredo P, Simoes S, Dias S, Moreira JN. Meeting the needs of breast cancer: a nucleolin’s perspective. Crit Rev Oncol Hematol. 2018;125:89–101.

    Article  PubMed  Google Scholar 

  7. Fonseca NA, Gregório AC, Mendes VM, Lopes R, Abreu T, Gonçalves N, et al. GMP-grade nanoparticle targeted to nucleolin downregulates tumor molecular signature, blocking growth and invasion, at low systemic exposure. Nano Today. 2021;37.

  8. Srivastava M, Pollard HB. Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J. 1999;13:1911–22.

    Article  CAS  PubMed  Google Scholar 

  9. Gaume X, Tassin AM, Ugrinova I, Mongelard F, Monier K, Bouvet P. Centrosomal nucleolin is required for microtubule network organization. Cell Cycle. 2015;14:902–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ugrinova I, Monier K, Ivaldi C, Thiry M, Storck S, Mongelard F, et al. Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication. BMC Mol Biol. 2007;8:66.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xu JY, Lu S, Xu XY, Hu SL, Li B, Li WX, et al. Prognostic significance of nuclear or cytoplasmic nucleolin expression in human non-small cell lung cancer and its relationship with DNA-PKcs. Tumour Biol: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2016;37:10349–56.

    Article  CAS  Google Scholar 

  12. Jain N, Zhu H, Khashab T, Ye Q, George B, Mathur R, et al. Targeting nucleolin for better survival in diffuse large B-cell lymphoma. Leukemia. 2018;32:663–74.

    Article  CAS  PubMed  Google Scholar 

  13. Qiu W, Zhou F, Zhang Q, Sun X, Shi X, Liang Y, et al. Overexpression of nucleolin and different expression sites both related to the prognosis of gastric cancer. APMIS. 2013;121:919–25.

    Article  CAS  PubMed  Google Scholar 

  14. Chen C, Chen L, Yao Y, Qin Z, Chen H. Nucleolin overexpression is associated with an unfavorable outcome for ependymoma: a multifactorial analysis of 176 patients. J Neurooncol. 2016;127:43–52.

    Article  CAS  PubMed  Google Scholar 

  15. Marcel V, Catez F, Berger CM, Perrial E, Plesa A, Thomas X, et al. Expression profiling of ribosome biogenesis factors reveals nucleolin as a novel potential marker to predict outcome in AML patients. PLoS ONE. 2017;12:e0170160.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Berger CM, Gaume X, Bouvet P. The roles of nucleolin subcellular localization in cancer. Biochimie. 2015;113:78–85.

    Article  CAS  PubMed  Google Scholar 

  17. Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol. 2003;163:871–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fonseca NA, Cruz AF, Moura V, Simoes S, Moreira JN. The cancer stem cell phenotype as a determinant factor of the heterotypic nature of breast tumors. Crit Rev Oncol Hematol. 2017;113:111–21.

    Article  PubMed  Google Scholar 

  19. Hovanessian AG, Soundaramourty C, Khoury DE, Nondier I, Svab J, Krust B. Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS ONE. 2010;5:e15787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E. A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci U S A. 2002;99:7444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lauffenburger DA, Linderman J, Berkowitz L. Analysis of mammalian cell growth factor receptor dynamics. Ann N Y Acad Sci. 1987;506:147–62.

    Article  CAS  PubMed  Google Scholar 

  22. Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD. MDA-MB-435 cells are derived from M14 melanoma cells–a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat. 2007;104:13–9.

    Article  PubMed  Google Scholar 

  23. Sellappan S, Grijalva R, Zhou X, Yang W, Eli MB, Mills GB, et al. Lineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell line. Cancer Res. 2004;64:3479–85.

    Article  CAS  PubMed  Google Scholar 

  24. Fonseca NA, Rodrigues AS, Rodrigues-Santos P, Alves V, Gregorio AC, Valerio-Fernandes A, et al. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination. Biomaterials. 2015;69:76–88.

    Article  CAS  PubMed  Google Scholar 

  25. Xiong Q, Wilson WK, Pang J. The Liebermann-Burchard reaction: sulfonation, desaturation, and rearrangment of cholesterol in acid. Lipids. 2007;42:87–96.

    Article  CAS  PubMed  Google Scholar 

  26. Moura V, Lacerda M, Figueiredo P, Corvo ML, Cruz ME, Soares R, et al. Targeted and intracellular triggered delivery of therapeutics to cancer cells and the tumor microenvironment: impact on the treatment of breast cancer. Breast Cancer Res Treat. 2012;133:61–73.

    Article  CAS  PubMed  Google Scholar 

  27. Fonseca NA, Gomes-da-Silva LC, Moura V, Simoes S, Moreira JN. Simultaneous active intracellular delivery of doxorubicin and C6-ceramide shifts the additive/antagonistic drug interaction of non-encapsulated combination. J Control Release. 2014;196:122–31.

    Article  CAS  PubMed  Google Scholar 

  28. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Said EA, Courty J, Svab J, Delbe J, Krust B, Hovanessian AG. Pleiotrophin inhibits HIV infection by binding the cell surface-expressed nucleolin. FEBS J. 2005;272:4646–59.

    Article  CAS  PubMed  Google Scholar 

  30. Said EA, Krust B, Nisole S, Svab J, Briand JP, Hovanessian AG. The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor. J Biol Chem. 2002;277:37492–502.

    Article  CAS  PubMed  Google Scholar 

  31. Nisole S, Krust B, Hovanessian AG. Anchorage of HIV on permissive cells leads to coaggregation of viral particles with surface nucleolin at membrane raft microdomains. Exp Cell Res. 2002;276:155–73.

    Article  CAS  PubMed  Google Scholar 

  32. Cherry RJ, Smith PR, Morrison IEG, Fernandez N. Mobility of cell surface receptors: a re-evaluation. FEBS Lett. 1998;430:88–91.

    Article  CAS  PubMed  Google Scholar 

  33. Lauffenburger DA, Linderman JJ. Receptors. Models for binding, trafficking, and signalling. The International Journal of Biochemistry & Cell Biology. 1996;28.

  34. Thoumine O, Saint-Michel E, Dequidt C, Falk J, Rudge R, Galli T, et al. Weak effect of membrane diffusion on the rate of receptor accumulation at adhesive contacts. Biophys J. 2005;89:L40–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol. 2012;1:147–68.

    Article  CAS  Google Scholar 

  36. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 2017;9.

  37. Perelson AS. Receptor clustering on a cell surface. III. theory of receptor cross-linking by multivalent ligands: description by ligand states. Mathematical Biosciences. 1981;53:1–39.

  38. Nir S, Peled R, Lee K-D. Analysis of particle uptake by cells: Binding to several receptors, equilibration time, endocytosis. Colloids Surf, A. 1994;89:45–57.

    Article  CAS  Google Scholar 

  39. Xu H, Shaw DE. A simple model of multivalent adhesion and its application to influenza infection. Biophys J. 2016;110:218–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Straubinger RM, Hong K, Friend DS, Papahadjopoulos D. Endocytosis of liposomes and intracellular fate of encapsulated molecules: Encounter with a low pH compartment after internalization in coated vesicles. Cell. 1983;32:1069–79.

    Article  CAS  PubMed  Google Scholar 

  41. Daleke DL, Hong K, Papahadjopoulos D. Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1990;1024:352–66.

  42. Düzgüneş N, Nir S. Mechanisms and kinetics of liposome–cell interactions. Adv Drug Deliver Rev. 1999;40:3–18.

    Article  Google Scholar 

  43. Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59:748–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu J, Miao Q, Tang J, Wang X, Dong D, Liu T, et al. Nucleolin mediates the internalization of rabbit hemorrhagic disease virus through clathrin-dependent endocytosis. PLoS Pathog. 2018;14:e1007383.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Caldeira De Moura VLDN, De Almeida Moreira JNS, De Magalhaes SSP, Pedroso De Lima MDCM, inventorsTargeted delivery to human diseases and disorders. PT2012.

  46. Birtwistle MR, Kholodenko BN. Endocytosis and signalling: a meeting with mathematics. Mol Oncol. 2009;3:308–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21:440–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Šimůnek T, Štěrba M, Popelová O, Adamcová M, Hrdina R, Geršl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009;61:154–71.

    Article  PubMed  Google Scholar 

  49. Brown MS, Anderson RGW, Goldstein JL. Recycling receptors: The round-trip itinerary of migrant membrane proteins. Cell. 1983;32:663–7.

    Article  CAS  PubMed  Google Scholar 

  50. Moehren G, Markevich N, Demin O, Kiyatkin A, Goryanin I, Hoek JB, et al. Temperature dependence of the epidermal growth factor receptor signaling network can be accounted for by a kinetic model. Biochemistry. 2002;41:306–20.

    Article  CAS  PubMed  Google Scholar 

  51. Tomoda H, Kishimoto Y, Lee YC. Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages. J Biol Chem. 1989;264:15445–50.

    Article  CAS  PubMed  Google Scholar 

  52. Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, et al. The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol. 2008;22:633–48.

    Article  CAS  PubMed  Google Scholar 

  53. Eliaz RE, Nir S, Marty C, Szoka FC Jr. Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Cancer Res. 2004;64:711–8.

    Article  CAS  PubMed  Google Scholar 

  54. Waters CM, Oberg KC, Carpenter G, Overholser KA. Rate constants for binding, dissociation, and internalization of EGF: effect of receptor occupancy and ligand concentration. Biochemistry. 1990;29:3563–9.

    Article  CAS  PubMed  Google Scholar 

  55. Bourbon H-M, Lapeyre B, Amalric F. Structure of the mouse nucleolin gene. J Mol Biol. 1988;200:627–38.

    Article  CAS  PubMed  Google Scholar 

  56. Bourbon H-M, Amalric F. Nucleolin gene organization in rodents: highly conserved sequenced within three of the 13 introns. Gene. 1990;88:187–96.

    Article  CAS  PubMed  Google Scholar 

  57. Srivastava M, Fleming PJ, Pollard HB, Burns AL. Cloning and sequencing of the human nucleolin cDNA. FEBS Lett. 1989;250:99–105.

    Article  CAS  PubMed  Google Scholar 

  58. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–19.

    Article  CAS  PubMed  Google Scholar 

  59. Serin G, Joseph G, Faucher C, Ghisolfi L, Bouche G, Amalric F, et al. Localization of nucleolin binding sites on human and mouse pre-ribosomal RNA. Biochimie. 1996;78:530–8.

    Article  CAS  PubMed  Google Scholar 

  60. González-Camacho F, Medina FJ. Nucleolins from different model organisms have conserved sequences reflecting the conservation of key cellular functions through evolution. J Appl Biomed. 2004;2:151–61.

    Article  Google Scholar 

  61. Ginisty H, Sicard H, Roger B, Bouvet P. Structure and functions of nucleolin. J Cell Sci. 1999;112(Pt 6):761–72.

    Article  CAS  PubMed  Google Scholar 

  62. Mongelard F, Bouvet P. Nucleolin: a multiFACeTed protein. Trends Cell Biol. 2007;17:80–6.

    Article  CAS  PubMed  Google Scholar 

  63. Tajrishi MM, Tuteja R, Tuteja N. Nucleolin: the most abundant multifunctional phosphoprotein of nucleolus. Commun Integr Biol. 2011;4:267–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Epstein H, Afergan E, Moise T, Richter Y, Rudich Y, Golomb G. Number-concentration of nanoparticles in liposomal and polymeric multiparticulate preparations: empirical and calculation methods. Biomaterials. 2006;27:651–9.

    Article  CAS  PubMed  Google Scholar 

  65. Gianni L, Vigano L, Locatelli A, Capri G, Giani A, Tarenzi E, et al. Human pharmacokinetic characterization and in vitro study of the interaction between doxorubicin and paclitaxel in patients with breast cancer. J Clin Oncol. 1997;15:1906–15.

    Article  CAS  PubMed  Google Scholar 

  66. Pinto AC, Moreira JN, Simoes S. Ciprofloxacin sensitizes hormone-refractory prostate cancer cell lines to doxorubicin and docetaxel treatment on a schedule-dependent manner. Cancer Chemother Pharmacol. 2009;64:445–54.

    Article  CAS  PubMed  Google Scholar 

  67. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  PubMed  Google Scholar 

  68. Pereira PMR, Sharma SK, Carter LM, Edwards KJ, Pourat J, Ragupathi A, et al. Caveolin-1 mediates cellular distribution of HER2 and affects trastuzumab binding and therapeutic efficacy. Nat Commun. 2018;9:5137.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Leahy DJ. Structure and function of the epidermal growth factor (EGF/ErbB) family of receptors. Adv Protein Chem. 2004;68:1–27.

    Article  CAS  PubMed  Google Scholar 

  70. Austin CD, De Maziere AM, Pisacane PI, van Dijk SM, Eigenbrot C, Sliwkowski MX, et al. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell. 2004;15:5268–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen X, Kube DM, Cooper MJ, Davis PB. Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA. Mol Ther. 2008;16:333–42.

    Article  CAS  PubMed  Google Scholar 

  72. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  73. Rye IH, Trinh A, Saetersdal AB, Nebdal D, Lingjaerde OC, Almendro V, et al. Intratumor heterogeneity defines treatment-resistant HER2+ breast tumors. Mol Oncol. 2018;12:1838–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Paschalis A, Sheehan B, Riisnaes R, Rodrigues DN, Gurel B, Bertan C, et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur Urol. 2019;76:469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014.

    Article  CAS  Google Scholar 

  76. Gedye CA, Hussain A, Paterson J, Smrke A, Saini H, Sirskyj D, et al. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity. PLoS ONE. 2014;9:e105602.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bates PJ, Reyes-Reyes EM, Malik MT, Murphy EM, O'Toole MG, Trent JO. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: Uses and mechanisms. Biochimica et Biophysica Acta (BBA) - General Subjects. 2017;1861:1414–28.

  78. Hu Q, Gu G, Liu Z, Jiang M, Kang T, Miao D, et al. F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery. Biomaterials. 2013;34:1135–45.

    Article  CAS  PubMed  Google Scholar 

  79. Winer I, Wang S, Lee YE, Fan W, Gong Y, Burgos-Ojeda D, et al. F3-targeted cisplatin-hydrogel nanoparticles as an effective therapeutic that targets both murine and human ovarian tumor endothelial cells in vivo. Cancer Res. 2010;70:8674–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MIT-Portugal Program.

Funding

This work was supported by the following projects: QREN/FEDER MultiNanoMed (Ref: 23240). This work was also financed by the European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Program under project CENTRO-01-0247-FEDER-017646 (ODD4PEGASEMP), and through the COMPETE 2020—Operational Program for Competitiveness and Internationalisation and Portuguese national funds via FCT – Fundação para a Ciência e a Tecnologia, I.P., under projects POCI-01-0145-FEDER-016390 (CancelStem), Euronanomed (FCT reference ENMed/0005/2015), CENTRO-01-0145-FEDER-000012-HealthyAging2020 and CIBB (FCT reference UIDB/04539/2020).

Author information

Authors and Affiliations

Authors

Contributions

R.L., K.S., and N.A.F. contributed equally for this work. R.L. designed and performed experiments, analyzed data, prepared figures, wrote and edited the manuscript. K.S. designed and performed the mathematical modeling, prepared figures, wrote and edited the manuscript. N.A.F. designed experiments, performed data interpretation, prepared figures, wrote, and edited the manuscript. A.G. provided support on the canine cell line and edited the manuscript. J.S.R. performed the conservation analysis and edited the manuscript. L.A. contributed to the design of the experiments. V.M. and S.S. supervised all the components of the study and edited the manuscript. B.T. supervised the mathematical modeling and edited the manuscript. J.N.M. supervised all components of this study, designed experiments, wrote and edited the manuscript.

Corresponding author

Correspondence to Bruce Tidor.

Ethics declarations

Consent for publication

All authors agree with manuscript publication.

Competing interests

V.M. and N.A.F. were former employees at TREAT U, SA. S.S., L.A. and J.N.M. are share-holders of TREAT U, SA. The remaining authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 407 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, R., Shi, K., Fonseca, N.A. et al. Modelling the impact of nucleolin expression level on the activity of F3 peptide-targeted pH-sensitive pegylated liposomes containing doxorubicin. Drug Deliv. and Transl. Res. 12, 629–646 (2022). https://doi.org/10.1007/s13346-021-00972-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-00972-z

Keywords

Navigation