Skip to main content
Log in

The Liebermann–Burchard Reaction: Sulfonation, Desaturation, and Rearrangment of Cholesterol in Acid

  • Original Article
  • Published:
Lipids

Abstract

In the Liebermann–Burchard (LB) colorimetric assay, treatment of cholesterol with sulfuric acid, acetic anhydride, and acetic acid elicits a blue color. We studied the reactivity of cholesterol under LB conditions and provide definitive NMR characterization for approximately 20 products, whose structure and distribution suggest the following mechanistic picture. The major reaction pathways do not involve cholestadienes, i-steroids, or cholesterol dimers, as proposed previously. Instead, cholesterol and its acetate and sulfate derivatives undergo sulfonation at a variety of positions, often with skeletal rearrangements. Elimination of an SO3H group as H2SO3 generates a new double bond. Repetition of this desaturation process leads to polyenes and ultimately to aromatic steroids. Linearly conjugated polyene cations can appear blue but form too slowly to account for the LB color response, whose chemical origin remains unidentified. Nevertheless, the classical polyene cation model is not excluded for Salkowski conditions (sulfuric acid), which immediately generate considerable amounts of cholesta-3,5-diene. Some rearrangements of cholesterol in H2SO4 resemble the diagenesis pathways of sterols and may furnish useful lipid biomarkers for characterizing geological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ES:

Electrospray

FAB:

Fast-atom bombardment

HPLC:

High-performance liquid chromatography

LB:

Liebermann–Burchard

NBA:

3-Nitrobenzyl alcohol

TLC:

Thin-layer chromatography

References

  1. Bartos J, Pesez M (1976) Colorimetric and fluorimetric analysis of steroids. Academic, London

    Google Scholar 

  2. Zak B (1980) Cholesterol methodology for human studies. Lipids 15:698–704

    Article  PubMed  CAS  Google Scholar 

  3. Zak B (1977) Cholesterol methodologies: a review. Clin Chem 23:1201–1214

    PubMed  CAS  Google Scholar 

  4. Tonks DB (1967) The estimation of cholesterol in serum: a classification and critical review of methods. Clin Biochem 1:12–29

    Article  CAS  Google Scholar 

  5. USA Food and Drug Administration. http://www.fda.gov/cdrh/ode/605.html#toc_18. Accessed Oct 2006

  6. Liebermann C (1885) Ueber das Oxychinoterpen. Chem Ber 18:1803–1809

    Google Scholar 

  7. Burchard H (1889) Beiträge zur Kenntnis des Cholesterins. Inaugural-Dissertation, Universität Rostock [Chem Zentralbl 61-I:25–27 (1890)]

  8. Xiong Q, Ruan B, Whitby FG, Tuohy RP, Belanger TL, Kelley RI, Wilson WK, Schroepfer GJ Jr (2002) A colorimetric assay for 7-dehydrocholesterol with potential application to screening for Smith-Lemli-Opitz syndrome. Chem Phys Lipids 115:1–15

    Article  PubMed  CAS  Google Scholar 

  9. Brieskorn CH, Hofmann H (1964) Beitrag zum Chemismus der Farbreaction nach Liebermann–Burchard. Arch Pharm 297:577–588

    Article  CAS  Google Scholar 

  10. Rosenheim O (1929) A specific colour reaction for ergosterol. Biochem J 23:47–53

    PubMed  CAS  Google Scholar 

  11. Watanabe T (1959) The colored intermediates and products of cholesterol by Liebermann–Burchard reaction, and its reaction mechanism. Eisei Shikensho Hokoku 77:87–94 (Chem Abstr 55:54430)

    Google Scholar 

  12. Burke RW, Diamondstone BI, Velapoldi RA, Menis O (1974) Mechanisms of the Liebermann–Burchard and Zak color reactions for cholesterol. Clin Chem 20:794–801

    PubMed  CAS  Google Scholar 

  13. Velapoldi RA, Diamondstone BI, Burke RW (1974) Spectral interpretation and kinetic studies of the Fe3+–H2SO4 (Zak) procedure for determination of cholesterol. Clin Chem 20:802–811

    PubMed  CAS  Google Scholar 

  14. Zuman P (1991) A review of reactions of some sterols in strongly acidic media. Microchem J 43:10–34

    Article  CAS  Google Scholar 

  15. Niiya T, Goto Y, Ono Y, Ueda Y (1980) Study on the correspondence of color change with polyeneyl cation formation of cholesterol in strong acids. Chem Pharm Bull 28:1747–1761

    CAS  Google Scholar 

  16. Abell LL, Levy BB, Brodie BB, Kendall FE (1952) Simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. J Biol Chem 195:357–366

    CAS  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC et al (2004) Gaussian 03, revisions C.02 and D.01. Gaussian, Wallingford, CT, USA

  18. Shan H, Segura MJR, Wilson WK, Lodeiro S, Matsuda SPT (2005) Enzymatic cycliation of dioxidosqualene to heterocyclic triterpenes. J Am Chem Soc 127:18008–18009

    Article  PubMed  CAS  Google Scholar 

  19. Salkowski E (1872) Kleinere Mittheilungen physiologisch-chemischen Inhalts (II). Archiv Gesammte Physiol Menschen Tiere 6:207–222

    Article  Google Scholar 

  20. Salkowski E (1908) Physiologisch-chemische Notizen. Hoppe Seylers Z Physiol Chem 57:515–528

    Google Scholar 

  21. Peakman TM, Ellis K, Maxwell JR (1988) Acid-catalyzed rearrangements of steroid alkenes. Part. 2 a re-investigation of the backbone rearrangement of cholest-5-ene. J Chem Soc Perkin Trans 1:1071–1075

    Article  Google Scholar 

  22. Scott AI (1964) Interpretation of the ultraviolet spectra of natural products. Pergamon, New York, p 392

  23. Sorensen TS (1965) The preparation and reactions of a homologous series of aliphatic polyenylic cations. J Am Chem Soc 87:5075–5084

    Article  CAS  Google Scholar 

  24. Deno NC, Pittman CU Jr, Turner JO (1965) Cyclizations of pentadienyl and heptatrienyl cations. J Am Chem Soc 87:2153–2157

    Article  CAS  Google Scholar 

  25. Yoder L, Thomas BH (1954) An antirachitic sulfonic acid derivative of cholesterol. Arch Biochem Biophys 50:113–123

    Article  PubMed  CAS  Google Scholar 

  26. Studer J, Purdie N, Krouse JA (2003) Friedel-Crafts acylation as a quality control assay for steroids. Appl Spectrosc 57:791–796

    Article  PubMed  CAS  Google Scholar 

  27. Rushdi AI, Ritter G, Grimalt JO, Simoneit BRT (2003) Hydrous pyrolysis of cholesterol under various conditions. Org Geochem 34:799–812

    Article  CAS  Google Scholar 

  28. Schüpfer PY, Gülacar FO (2000) Relative stabilities of cholestadienes calculated by molecular mechanics and semi-empirical methods: application to the acid-catalyzed rearrangement reactions of cholesta-3,5-diene. Org Geochem 31:1589–1596

    Article  Google Scholar 

  29. Chen J, Summons RE (2001) Complex patterns of steroidal biomarkers in tertiary lacustrine sediments of the Biyang basin, China. Org Geochem 32:115–126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by startup funding from Texas Southern University for Q.X. We thank Alemka Kisic for supplying purified cholesterol. Quantum-mechanical calculations were carried out in part on the Rice Terascale Cluster funded by the NSF (EIA-0216467), Intel, and Hewlett-Packard and on the Rice Cray XD1 Research Cluster funded by the NSF (CNS-0421109) in partnership with AMD and Cray.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanbo Xiong.

About this article

Cite this article

Xiong, Q., Wilson, W.K. & Pang, J. The Liebermann–Burchard Reaction: Sulfonation, Desaturation, and Rearrangment of Cholesterol in Acid. Lipids 42, 87–96 (2007). https://doi.org/10.1007/s11745-006-3013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-3013-5

Keywords

Navigation