Skip to main content

Advertisement

Log in

Thiolated polymer nanocarrier reinforced with glycyrrhetinic acid for targeted delivery of 5-fluorouracil in hepatocellular carcinoma

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The present work investigates the targeting efficacy of a novel thiolated polymer-based nanocomposite reinforced with glycyrrhetinic acid (GA) and loaded with 5-fluorouracil in hepatocellular carcinoma (HCC). The thiolated polymers were synthesized by EDAC-mediated conjugation reactions and lyophilization. The nanoparticles were prepared by solvent diffusion and high-pressure homogenization method. The prepared nanocomposite was characterized by Fourier transform infrared (FTIR) radiation, x-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Pharmacological evaluation of the formulation was carried out on a rat model of diethylnitrosamine (DEN), and carbon tetrachloride (CCl4)-induced HCC and MTT assay was carried out with HEP-G2 cell line. In silico studies were conducted to investigate the probable mechanistic pathway of the nanocomposite. FTIR and XRD analysis indicated the successful thiolation of the polymers and confirmed the formation of the nanocomposite without any incompatibilities. DLS, SEM/EDX and AFM characterization confirmed that the nanoparticles were within the nano-size range. MTT assay implied the cytotoxic nature of the nanocomposite against hepatic carcinoma cells. The in vivo study revealed that serum SGOT, SGPT, ALP, GGT and total bilirubin levels were significantly reduced, in comparison with disease control and the result was confirmed by histopathology studies. The results of the HPLC analysis of liver homogenate confirmed the liver targeting ability of the nanocomposite. In silico studies exhibited significant binding affinity of GA and thiolated Eudragit towards liver homolog receptor-1 (LRH-1) suggesting that the developed nanocomposite could be a potential material for the treatment of HCC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ma X, Cheng Z, Jin Y, Liang X, Yang X, Dai Z, et al. SM5-1-conjugated PLA nanoparticles loaded with 5-fluorouracil for targeted hepatocellular carcinoma imaging and therapy. Biomaterials. 2014;35(9):2878–89. https://doi.org/10.1016/j.biomaterials.2013.12.045.

    Article  CAS  PubMed  Google Scholar 

  2. Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials. 2009;30(2):226–32. https://doi.org/10.1016/j.biomaterials.2008.09.014.

    Article  CAS  PubMed  Google Scholar 

  3. Tian Q, Zhang CN, Wang XH, Wang W, Huang W, Cha RT, et al. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials. 2010;31(17):4748–56. https://doi.org/10.1016/j.biomaterials.2010.02.042.

    Article  CAS  PubMed  Google Scholar 

  4. Shanmuganathan R, Edison TNJI, LewisOscar F, Kumar P, Shanmugam S, Pugazhendhi A. Chitosan nanopolymers: an overview of drug delivery against cancer. Int J Biol Macromol. 2019;130:727–36. https://doi.org/10.1016/j.ijbiomac.2019.02.060.

    Article  CAS  PubMed  Google Scholar 

  5. She X, Chen L, Velleman L, Li C, Zhu H, He C, et al. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery. J Colloid Interface Sci. 2015;445:151–60. https://doi.org/10.1016/j.jcis.2014.12.053.

    Article  CAS  PubMed  Google Scholar 

  6. Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev. 2019;151–152:191–221. https://doi.org/10.1016/j.addr.2019.04.007.

    Article  CAS  PubMed  Google Scholar 

  7. Wu F, Li X, Jiang B, Yan J, Zhang Z, Qin J, et al. Glycyrrhetinic acid functionalized nanoparticles for drug delivery to liver cancer. J Biomed Nanotechnol. 2018;14(11):1837–52. https://doi.org/10.1166/jbn.2018.2638.

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Gu X, Wang H, Yang J, Mao S. Enhanced delivery of doxorubicin to the liver through self-assembled nanoparticles formed via conjugation of glycyrrhetinic acid to the hydroxyl group of hyaluronic acid. Carbohyd Polym. 2018;195:170–9. https://doi.org/10.1016/j.carbpol.2018.04.052.

    Article  CAS  Google Scholar 

  9. Zhang X, Ng HLH, Lu A, Lin C, Zhou L, Lin G, et al. Drug delivery system targeting advanced hepatocellular carcinoma: Current and future. Nanomed Nanotechnol Biol Med. 2016;12(4):853–69. https://doi.org/10.1016/j.nano.2015.12.381.

  10. Kast CE, Frick W, Losert U, Bernkop-Schnürch A. Chitosan-thioglycolic acid conjugate: a new scaffold material for tissue engineering? Int J Pharm. 2003;256(1):183–9. https://doi.org/10.1016/S0378-5173(03)00076-0.

    Article  CAS  PubMed  Google Scholar 

  11. Mukherjee D, Srinivasan B, Anbu J, Azamthulla M, Banala VT, Ramachandra SG. Improvement of bone microarchitecture in methylprednisolone induced rat model of osteoporosis by using thiolated chitosan-based risedronate mucoadhesive film. Drug Dev Ind Pharm. 2018;44(11):1845–56. https://doi.org/10.1080/03639045.2018.1503297.

    Article  CAS  PubMed  Google Scholar 

  12. Hauptstein S, Bonengel S, Rohrer J, Bernkop-Schnürch A. Preactivated thiolated poly(methacrylic acid-co-ethyl acrylate): synthesis and evaluation of mucoadhesive potential. Eur J Pharm Sci. 2014;63:132–9. https://doi.org/10.1016/j.ejps.2014.07.002.

    Article  CAS  PubMed  Google Scholar 

  13. Mukherjee D, Srinivasan B, Anbu J, Azamthulla M, Teja BV, Ramachandra SG, et al. Pamidronate functionalized mucoadhesive compact for treatment of osteoporosis-in vitro and in vivo characterization. J Drug Deliv Sci Technol. 2019;52:915–26. https://doi.org/10.1016/j.jddst.2019.06.001.

    Article  CAS  Google Scholar 

  14. Xu B, Zhang W, Chen Y, Xu Y, Wang B, Zong L. Eudragit L100-coated mannosylated chitosan nanoparticles for oral protein vaccine delivery. Int J Biol Macromol. 2018;113:534–42. https://doi.org/10.1016/j.ijbiomac.2018.02.016.

    Article  CAS  PubMed  Google Scholar 

  15. Petkar KC, Chavhan S, Kunda N, Saleem I, Somavarapu S, Taylor KMG, et al. Development of novel octanoyl chitosan nanoparticles for improved rifampicin pulmonary delivery: optimization by factorial design. AAPS PharmSciTech. 2018;19(4):1758–72. https://doi.org/10.1208/s12249-018-0972-9.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Yao J, Zhou J, Wang T, Zhang Q. Glycyrrhetinic acid-graft-hyaluronic acid conjugate as a carrier for synergistic targeted delivery of antitumor drugs. Int J Pharm. 2013;441(1):654–64. https://doi.org/10.1016/j.ijpharm.2012.10.030.

    Article  CAS  PubMed  Google Scholar 

  17. Alghyamah AA, Haider S, Khalil U, Khan R, Haider A, Almasry WA, et al. Synthesis and characterization of graphene oxide, reduced graphene oxide and their nanocomposites with polyethylene oxide. Curr Appl Phys. 2020. https://doi.org/10.1016/j.cap.2020.03.002.

    Article  Google Scholar 

  18. Moreira CDF, Carvalho SM, Sousa RG, Mansur HS, Pereira MM. Nanostructured chitosan/gelatin/bioactive glass in situ forming hydrogel composites as a potential injectable matrix for bone tissue engineering. Mater Chem Phys. 2018;218:304–16. https://doi.org/10.1016/j.matchemphys.2018.07.039.

    Article  CAS  Google Scholar 

  19. Santhosh S, Mukherjee D, Anbu J, Murahari M, Teja BV. Improved treatment efficacy of risedronate functionalized chitosan nanoparticles in osteoporosis: formulation development, in vivo, and molecular modelling studies. J Microencapsul. 2019;36(4):338–55. https://doi.org/10.1080/02652048.2019.1631401.

    Article  CAS  PubMed  Google Scholar 

  20. Park J, Kim Y-C. Topical delivery of 5-fluorouracil-loaded carboxymethyl chitosan nanoparticles using microneedles for keloid treatment. Drug Deliv Transl Res. 2020. https://doi.org/10.1007/s13346-020-00781-w.

    Article  PubMed  Google Scholar 

  21. Ahmadian E, Dizaj SM, Rahimpour E, Hasanzadeh A, Eftekhari A, Hosain zadegan H, et al. Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line. Mater Sci Eng C. 2018;93:465–71. https://doi.org/10.1016/j.msec.2018.08.027.

  22. Radwan RR, Zaher NH, El-Gazzar MG. Novel 1,2,4-triazole derivatives as antitumor agents against hepatocellular carcinoma. Chem Biol Interact. 2017;274:68–79. https://doi.org/10.1016/j.cbi.2017.07.008.

    Article  CAS  PubMed  Google Scholar 

  23. Hussain T, Siddiqui HH, Fareed S, Vijayakumar M, Rao CV. Evaluation of chemopreventive effect of Fumaria indica against N-nitrosodiethylamine and CCl4-induced hepatocellular carcinoma in Wistar rats. AsianPac J Trop Med. 2012;5(8):623–9. https://doi.org/10.1016/s1995-7645(12)60128-x.

    Article  Google Scholar 

  24. Radwan RR, Ali HE. Radiation-synthesis of chitosan/poly (acrylic acid) nanogel for improving the antitumor potential of rutin in hepatocellular carcinoma. Drug Deliv Transl Res. 2020. https://doi.org/10.1007/s13346-020-00792-7.

    Article  Google Scholar 

  25. Alsarra IA, Alarifi MN. Validated liquid chromatographic determination of 5-fluorouracil in human plasma. J Chromatogr B. 2004;804(2):435–9. https://doi.org/10.1016/j.jchromb.2004.01.043.

    Article  CAS  Google Scholar 

  26. Ganguly K, Kulkarni AR, Aminabhavi TM. In vitro cytotoxicity and in vivo efficacy of 5-fluorouracil-loaded enteric-coated PEG-crosslinked chitosan microspheres in colorectal cancer therapy in rats. Drug Delivery. 2015:1–14. https://doi.org/10.3109/10717544.2015.1089955.

  27. Yan C, Gu J, Guo Y, Chen D. In vivo biodistribution for tumor targeting of 5-fluorouracil (5-FU) loaded N-succinyl-chitosan (Suc-Chi) nanoparticles. Yakugaku Zasshi. 2010;130(6):801–4.

    Article  CAS  Google Scholar 

  28. Sekar V, Rajendran K, Vallinayagam S, Deepak V, Mahadevan S. Synthesis and characterization of chitosan ascorbate nanoparticles for therapeutic inhibition for cervical cancer and their in silico modeling. J Ind Eng Chem. 2018. https://doi.org/10.1016/j.jiec.2018.01.001.

    Article  Google Scholar 

  29. Yin J, Xiang C, Song X. Nanoencapsulation of psoralidin via chitosan and Eudragit S100 for enhancement of oral bioavailability. Int J Pharm. 2016;510(1):203–9. https://doi.org/10.1016/j.ijpharm.2016.05.007.

    Article  CAS  PubMed  Google Scholar 

  30. Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated chitosans: a multi-talented class of polymers for various applications. Biomacromol. 2020. https://doi.org/10.1021/acs.biomac.0c00663.

    Article  Google Scholar 

  31. Zhang Y, Wu X, Meng L, Zhang Y, Ai R, Qi N, et al. Thiolated Eudragit nanoparticles for oral insulin delivery: preparation, characterization and in vivo evaluation. Int J Pharm. 2012;436(1):341–50. https://doi.org/10.1016/j.ijpharm.2012.06.054.

    Article  CAS  PubMed  Google Scholar 

  32. Gök MK, Demir K, Cevher E, Özsoy Y, Cirit Ü, Bacınoğlu S, et al. The effects of the thiolation with thioglycolic acid and l-cysteine on the mucoadhesion properties of the starch-graft-poly(acrylic acid). Carbohyd Polym. 2017;163:129–36. https://doi.org/10.1016/j.carbpol.2017.01.065.

    Article  CAS  Google Scholar 

  33. Meena DJ. Aggregation of thiol coated gold nanoparticles: a simulation study on the effect of polymer coverage density and solvent. Comput Mater Sci. 2014;86:174–9. https://doi.org/10.1016/j.commatsci.2014.01.042.

    Article  CAS  Google Scholar 

  34. Tığlı Aydın RS, Pulat M. 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater. 2012;2012:313961. https://doi.org/10.1155/2012/313961.

    Article  CAS  Google Scholar 

  35. Gyarmati B, Némethy Á, Szilágyi A. Reversible disulphide formation in polymer networks: a versatile functional group from synthesis to applications. Eur Polymer J. 2013;49(6):1268–86. https://doi.org/10.1016/j.eurpolymj.2013.03.001.

    Article  CAS  Google Scholar 

  36. Prabahar K, Udhumansha U, Qushawy M. Optimization of Thiolated Chitosan Nanoparticles for the Enhancement of in Vivo Hypoglycemic Efficacy of Sitagliptin in Streptozotocin-Induced Diabetic Rats. Pharmaceutics. 2020;12(4). https://doi.org/10.3390/pharmaceutics12040300.

  37. D.J. Mukherjee SB, V.Madhavan. Bilayered Mucoadhesive delivery system for extended release of Bisphosphonates. J Pharma Bio Sci. 2012;3(2):10.

  38. Sood A, Dev A, Mohanbhai SJ, Shrimali N, Kapasiya M, Kushwaha AC, et al. Disulfide-bridged chitosan-Eudragit S-100 nanoparticles for colorectal cancer. ACS Appl Nano Mater. 2019;2(10):6409–17. https://doi.org/10.1021/acsanm.9b01377.

    Article  CAS  Google Scholar 

  39. Janardhanam LSL, Indukuri VV, Verma P, Dusane AC, Venuganti VVK. Functionalized layer-by-layer assembled film with directional 5-fluorouracil release to target colon cancer. Mater Sci Eng, C. 2020;115:111118. https://doi.org/10.1016/j.msec.2020.111118.

    Article  CAS  Google Scholar 

  40. Tiboni M, Benedetti S, Skouras A, Curzi G, Perinelli DR, Palmieri GF, et al. 3D-printed microfluidic chip for the preparation of glycyrrhetinic acid-loaded ethanolic liposomes. Int J Pharm. 2020;584:119436. https://doi.org/10.1016/j.ijpharm.2020.119436.

    Article  CAS  PubMed  Google Scholar 

  41. Cheng M, Gao X, Wang Y, Chen H, He B, Xu H, et al. Synthesis of Glycyrrhetinic Acid-Modified Chitosan 5-Fluorouracil Nanoparticles and Its Inhibition of Liver Cancer Characteristics in Vitro and in Vivo. 2013;11(9):3517–36.

  42. Eleraky NE, Swarnakar NK, Mohamed DF, Attia MA, Pauletti GM. Permeation-enhancing nanoparticle formulation to enable oral absorption of enoxaparin. AAPS PharmSciTech. 2020;21(3):88. https://doi.org/10.1208/s12249-020-1618-2.

    Article  CAS  PubMed  Google Scholar 

  43. Nie X, Liu Y, Li M, Yu X, Yuan W, Huang S, et al. SP94 Peptide-Functionalized PEG-PLGA nanoparticle loading with cryptotanshinone for targeting therapy of hepatocellular carcinoma. AAPS PharmSciTech. 2020;21(4):124. https://doi.org/10.1208/s12249-020-01655-7.

    Article  CAS  PubMed  Google Scholar 

  44. Mukherjee D, Azamthulla M, Santhosh S, Dath G, Ghosh A, Natholia R, et al. Development and characterization of chitosan-based hydrogels as wound dressing materials. J Drug Deliv Sci Technol. 2018;46:498–510. https://doi.org/10.1016/j.jddst.2018.06.008.

    Article  CAS  Google Scholar 

  45. Çiftçi H, Arpa MD, Gülaçar İM, Özcan L, Ersoy B. Development and evaluation of mesoporous montmorillonite/magnetite nanocomposites loaded with 5-Fluorouracil. Microporous Mesoporous Mater. 2020;303:110253. https://doi.org/10.1016/j.micromeso.2020.110253.

    Article  CAS  Google Scholar 

  46. Javanbakht S, Hemmati A, Namazi H, Heydari A. Carboxymethylcellulose-coated 5-fluorouracil@MOF-5 nano-hybrid as a bio-nanocomposite carrier for the anticancer oral delivery. Int J Biol Macromol. 2020;155:876–82. https://doi.org/10.1016/j.ijbiomac.2019.12.007.

    Article  CAS  PubMed  Google Scholar 

  47. Rajan M, Raj V, Al-Arfaj AA, Murugan AM. Hyaluronidase enzyme core-5-fluorouracil-loaded chitosan-PEG-gelatin polymer nanocomposites as targeted and controlled drug delivery vehicles. Int J Pharm. 2013;453(2):514–22. https://doi.org/10.1016/j.ijpharm.2013.06.030.

    Article  CAS  PubMed  Google Scholar 

  48. Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials (Basel, Switzerland). 2018;11(7). https://doi.org/10.3390/ma11071154.

  49. Kadry MO, Abdel-Megeed RM, El-Meliegy E, Abdel-Hamid A-HZ. Crosstalk between GSK-3, c-Fos, NFκB and TNF-α signaling pathways play an ambitious role in Chitosan Nanoparticles Cancer Therapy. Toxicol Rep. 2018;5:723–7. https://doi.org/10.1016/j.toxrep.2018.06.002

  50. Cai Y, Xu Y, Chan HF, Fang X, He C, Chen M. Glycyrrhetinic acid mediated drug delivery carriers for hepatocellular carcinoma therapy. Mol Pharm. 2016;13(3):699–709. https://doi.org/10.1021/acs.molpharmaceut.5b00677.

    Article  CAS  PubMed  Google Scholar 

  51. Nadolny C, Dong X. Liver receptor homolog-1 (LRH-1): a potential therapeutic target for cancer. Cancer Biol Ther. 2015;16(7):997–1004. https://doi.org/10.1080/15384047.2015.1045693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sablin EP, Krylova IN, Fletterick RJ, Ingraham HA. Structural basis for ligand-independent activation of the orphan nuclear receptor LRH-1. Mol Cell. 2003;11(6):1575–85. https://doi.org/10.1016/s1097-2765(03)00236-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors candidly thank M. S. Ramaiah University of Applied Sciences and Gokula Education Foundation (GEF) for supporting with the facilities for the project.

Funding

The present study did not receive any funding from any source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhrubojyoti Mukherjee.

Ethics declarations

Compliance with ethical standards

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures followed for animal studies were in compliance with the guidelines of the ethical committee of the Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences with regard to the care and use of laboratory animals. The experimental protocol was approved by Institutional Animal Ethical Committee with the approval number XVIII/MSRFPH/M-06/0.8.02.2017.

Informed consent

No human studies were carried out by the authors for this article.

Ethical statement

The protocol of the experimental design was approved by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India, and by the Institutional Animal Ethics Committee (Registration No: 220/PO/ReBi/S/2000/CPCSEA/02.05.2016).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1660 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S.S., Mukherjee, D., Sukharamwala, P. et al. Thiolated polymer nanocarrier reinforced with glycyrrhetinic acid for targeted delivery of 5-fluorouracil in hepatocellular carcinoma. Drug Deliv. and Transl. Res. 11, 2252–2269 (2021). https://doi.org/10.1007/s13346-020-00894-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00894-2

Keywords

Navigation