Skip to main content
Log in

Effects of sustained GABA releasing implants on pancreatic islets in mice

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that is strongly and selectively synthesized in and secreted from pancreatic beta cells. Exogenously delivered GABA has been proposed to induce beta cell regeneration in type 1 diabetes, but these results have been difficult to replicate and may depend on the specifics of the animal model and drug delivery method used. Here, we developed a GABA-releasing ethylene-vinyl acetate polymer implant for sustained GABA delivery to the intraperitoneal space as an alternative to injected or oral GABA. We explored the effect of the GABA-releasing polymer implants compared to implanted osmotic pumps loaded with GABA on islet size in non-diabetic, outbred mice. We also attempted to monitor in vivo GABA release using HPLC on blood samples, but these measurements were confounded by high variability within treatment groups and unexpectedly high serum GABA levels in mice receiving GABA-negative implants. The ethylene-vinyl acetate polymer implants became heavily fibrosed with abdominal adhesion tissue, while the osmotic pumps had no macroscopic fibrosis. Histological analysis showed no significant effect of the sustained GABA delivery polymer or osmotic pumps on islet size, alpha cell to beta cell ratio, or the number of Ki67-positive islet cells. The GABA treatment time course was limited to two weeks due to the drug-release window of the polymer, while others reported islet-trophic effects of GABA after 10 to 12 weeks of treatment. In summary, our study is consistent with the concept that exogenous GABA administration does not significantly alter islet cell mass in non-diabetic CD-1 mice in the short-term. However, more data are needed including higher GABA doses and more prolonged treatment regimens for a better comparison with contrasting reports.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Leelarathna L, Guzder R, Muralidhara K, Evans ML. Diabetes: glycaemic control in type 1. BMJ Clin. Evid. 2011.

  2. Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005;26(2):19–39.

    PubMed  PubMed Central  Google Scholar 

  3. Cersosimo E, Solis-Herrera C, Trautmann ME, Malloy J, Triplitt CL. Assessment of pancreatic β-cell function: review of methods and clinical applications. Curr Diabetes Rev. 2014;10(1):2–42.

    Article  CAS  Google Scholar 

  4. Pathak V, Pathak NM, O’Neill CL, Guduric-Fuchs J, Medina RJ. Therapies for type 1 diabetes: current scenario and future perspectives. Clin. Med. Insights Endocrinol. Diabetes. 2019;12. https://doi.org/10.1177/1179551419844521.

  5. Dunn TB, Kirchner V, Bellin MD. Beta-cell replacement therapy: current outcomes and future landscape. Curr Opin Organ Transplant. 2015;20(6):681–90. https://doi.org/10.1097/MOT.0000000000000245.

    Article  CAS  PubMed  Google Scholar 

  6. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69–82. https://doi.org/10.1016/S0140-6736(13)60591-7.

    Article  PubMed  Google Scholar 

  7. Franklin IK, Wollheim CB. GABA in the endocrine pancreas. J Gen Physiol. 2004;123(3):185–90. https://doi.org/10.1085/jgp.200409016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wan Y, Wang Q, Prud’homme GJ. GABAergic system in the endocrine pancreas: a new target for diabetes treatment. Diabetes Metab Syndr Obes Targets Ther. 2015;8:79–87. https://doi.org/10.2147/DMSO.S50642.

  9. Hagan DW, et al. Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nat Metab. 2019;1(11):1110–26. https://doi.org/10.1038/s42255-019-0135-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feng AL, Xiang YY, Gui L, Kaltsidis G, Feng Q, Lu WY. Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes. Diabetologia. 2017;60(6):1033–42. https://doi.org/10.1007/s00125-017-4239-x.

    Article  CAS  PubMed  Google Scholar 

  11. Tian J, Dang H, Nguyen AV, Chen Z, Kaufman DL. Combined therapy with GABA and proinsulin/alum acts synergistically to restore long-term normoglycemia by modulating T-cell autoimmunity and promoting β-cell replication in newly diabetic NOD mice. Diabetes. 2014;63(9):3128–34. https://doi.org/10.2337/db13-1385.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Soltani N, et al. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci U S A. 2011;108(28):11692–7. https://doi.org/10.1073/pnas.1102715108.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Purwana I, et al. GABA promotes human β-cell proliferation and modulates glucose homeostasis. Diabetes. 2014;63(12):4197–205. https://doi.org/10.2337/db14-0153.

    Article  CAS  PubMed  Google Scholar 

  14. Prud’homme GJ, Glinka Y, Hasilo C, Paraskevas S, Li X, Wang Q. GABA protects human islet cells against the deleterious effects of immunosuppressive drugs and exerts immunoinhibitory effects alone. Transplantation. 2013;96(7):616. https://doi.org/10.1097/TP.0b013e31829c24be.

  15. Bhandage AK, et al. GABA regulates release of inflammatory cytokines from peripheral blood mononuclear cells and CD4+ T cells and is immunosuppressive in type 1 diabetes. EBioMedicine. 2018;30:283–94. https://doi.org/10.1016/j.ebiom.2018.03.019.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weir GC, Bonner-Weir S. GABA signaling stimulates β cell regeneration in diabetic mice. Cell. 2017;168(1):7–9. https://doi.org/10.1016/j.cell.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  17. Ben-Othman N, et al. Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis. Cell. 2017;168(1):73-85.e11. https://doi.org/10.1016/j.cell.2016.11.002.

    Article  CAS  PubMed  Google Scholar 

  18. He S, et al. Rapamycin/GABA combination treatment ameliorates diabetes in NOD mice. Mol Immunol. 2016;73:130–7. https://doi.org/10.1016/j.molimm.2016.01.008.

    Article  CAS  PubMed  Google Scholar 

  19. Quoix N, Cheng-Xue R, Guiot Y, Herrera PL, Henquin J-C, Gilon P. The GluCre-ROSA26EYFP mouse: a new model for easy identification of living pancreatic α-cells. FEBS Lett. 2007;581(22):4235–40. https://doi.org/10.1016/j.febslet.2007.07.068.

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, et al. Artesunate prevents type 1 diabetes in NOD mice mainly by inducing protective IL-4-producing T cells and regulatory T cells, FASEB. J Off Publ Fed Am Soc Exp Biol. 2019;33(7):8241–8. https://doi.org/10.1096/fj.201900146R.

    Article  CAS  Google Scholar 

  21. Li J, et al. Artemisinins target GABAA receptor signaling and impair α cell identity. Cell. 2017;168(1):86-100.e15. https://doi.org/10.1016/j.cell.2016.11.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Collombat P, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α- and subsequently β-cells. Cell. 2009;138(3):449–62. https://doi.org/10.1016/j.cell.2009.05.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Courtney M, et al. The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells. PLoS Genet. 2013;9(10). https://doi.org/10.1371/journal.pgen.1003934.

  24. van der Meulen T, et al. Artemether does not turn α cells into β cells. Cell Metab. 2018;27(1):218-225.e4. https://doi.org/10.1016/j.cmet.2017.10.002.

    Article  CAS  PubMed  Google Scholar 

  25. Ackermann AM, Moss NG, Kaestner KH. GABA and artesunate do not induce pancreatic α-to-β cell transdifferentiation in vivo. Cell Metab. 2018;28(5):787-792.e3. https://doi.org/10.1016/j.cmet.2018.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Untereiner A, et al. GABA promotes β-cell proliferation, but does not overcome impaired glucose homeostasis associated with diet-induced obesity. FASEB J. 2018;33(3):3968–84. https://doi.org/10.1096/fj.201801397R.

    Article  PubMed  Google Scholar 

  27. Yang NJ, Hinner MJ. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol Biol Clifton NJ. 2015;1266:29–53. https://doi.org/10.1007/978-1-4939-2272-7_3.

    Article  CAS  Google Scholar 

  28. Silberstein GB, Daniel CW. Elvax 40P implants: sustained, local release of bioactive molecules influencing mammary ductal development. Dev Biol. 1982;93(1):272–8. https://doi.org/10.1016/0012-1606(82)90259-7.

    Article  CAS  PubMed  Google Scholar 

  29. Almeida A, et al. Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide. Eur J Pharm Biopharm. 2012;82(3):526–33. https://doi.org/10.1016/j.ejpb.2012.08.008.

    Article  CAS  PubMed  Google Scholar 

  30. Fiorani L, Maccarone R, Fernando N, Colecchi L, Bisti S, Valter K. Slow-release drug delivery through Elvax 40W to the rat retina: implications for the treatment of chronic conditions. J Vis Exp JoVE 2014;(91). https://doi.org/10.3791/51563.

  31. Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci. 2016;90:53–63. https://doi.org/10.1016/j.ejps.2015.11.005.

    Article  CAS  PubMed  Google Scholar 

  32. Schneider C, Langer R, Loveday D, Hair D. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J Controlled Release. 2017;262:284–95. https://doi.org/10.1016/j.jconrel.2017.08.004.

    Article  CAS  Google Scholar 

  33. Okabe K, Kimura H, Okabe J, Kato A, Kunou N, Ogura Y. Intraocular tissue distribution of betamethasone after intrascleral administration using a non-biodegradable sustained drug delivery device. Invest Ophthalmol Vis Sci. 2003;44(6):2702–7. https://doi.org/10.1167/iovs.02-0956.

    Article  PubMed  Google Scholar 

  34. The Dow Chemical Company, ELVAXTM 40W ethylene vinyl acetate copolymer technical data sheet. The Dow Chemical Company, 2019, [Online]. Available: https://www.dow.com/en-us/document-viewer.html?ramdomVar=2253541954360773183&docPath=/content/dam/dcc/documents/en-us/productdatasheet/914/914-20801-01-elvax-40w-ethylene-vinyl-acetate-copolymer-tds.pdf.

  35. Tallury P, Alimohammadi N, Kalachandra S. Poly(ethylene-co-vinyl acetate) copolymer matrix for delivery of chlorhexidine and acyclovir drugs for use in the oral environment: effect of drug combination, copolymer composition and coating on the drug release rate. Dent Mater Off Publ Acad Dent Mater. 2007;23(4):404–9. https://doi.org/10.1016/j.dental.2006.02.011.

    Article  CAS  Google Scholar 

  36. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7(4):429–44. https://doi.org/10.1517/17425241003602259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. DURECT Corporation, Alzet MICRO-OSMOTIC PUMP MODEL 1002. DURECT Corporation, Oct. 2016, Accessed: Apr. 20, 2020. [Online]. Available: https://www.alzet.com/wp-content/uploads/2019/06/Specs-1002.pdf.

  38. Thammacharoen S, Kitchanukitwattana P, Suwanapaporn P, Chaiyabutr N. Effects of hindbrain infusion of an estrogen receptor antagonist on estrogenic modulation of eating behavior. Neurophysiology. 2017;49(1):72–7. https://doi.org/10.1007/s11062-017-9631-0.

    Article  CAS  Google Scholar 

  39. Zhidkov N, De Souza R, Ghassemi AH, Allen C, Piquette-Miller M. Continuous intraperitoneal carboplatin delivery for the treatment of late-stage ovarian cancer. Mol Pharm. 2013;10(9):3315–22. https://doi.org/10.1021/mp400345h.

    Article  CAS  PubMed  Google Scholar 

  40. Hippocampal MicroRNA-124 enhances chronic stress resilience in mice| Journal of Neuroscience. https://www.jneurosci.org/content/36/27/7253 (accessed Apr. 20, 2020).

  41. Zandy SL , Doherty JM, Wibisono ND, Gonzales RA. High sensitivity HPLC method for analysis of in vivo extracellular GABA using optimized fluorescence parameters for o-phthalaldehyde (OPA)/sulfite derivatives. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;15:1055–1056, p. 1–7. https://doi.org/10.1016/j.jchromb.2017.04.003.

  42. “CD-1®IGS Mice.” Charles River Laboratories International, Inc, 2011, [Online]. Available: https://www.criver.com/sites/default/files/resources/CD-1IGSMouseModelInformationSheet.pdf.

  43. Hickman DL, Johnson J, Vemulapalli TH, Crisler JR, Shepherd R. Commonly used animal models. Princ Anim Res Grad Undergrad Stud. 2017; p. 117–175. https://doi.org/10.1016/B978-0-12-802151-4.00007-4.

  44. Tuttle AH, Philip VM, Chesler EJ, Mogil JS. Comparing phenotypic variation between inbred and outbred mice. Nat Methods 2018;15(12). https://doi.org/10.1038/s41592-018-0224-7.

  45. Kilimnik G, Jo J, Periwal V, Zielinski MC, Hara M. Quantification of islet size and architecture. Islets. 2012;4(2):167–72. https://doi.org/10.4161/isl.19256.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M. Islet architecture. Islets. 2009;1(2):129–36. https://doi.org/10.4161/isl.1.2.9480.

    Article  PubMed  Google Scholar 

  47. Siepmann J, Peppas NA. Higuchi equation: derivation, applications, use and misuse. Int J Pharm. 2011;418(1):6–12. https://doi.org/10.1016/j.ijpharm.2011.03.051.

    Article  CAS  PubMed  Google Scholar 

  48. Brophy MR, Deasy PB. Application of the Higuchi model for drug release from dispersed matrices to particles of general shape. Int J Pharm. 1987;37(1):41–7. https://doi.org/10.1016/0378-5173(87)90008-1.

    Article  CAS  Google Scholar 

  49. Shin SC, Byun SY. Controlled release of ethinylestradiol from ethylene-vinyl acetate membrane. Int J Pharm. 1996;137(1):95–102. https://doi.org/10.1016/0378-5173(96)04497-3.

    Article  CAS  Google Scholar 

  50. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50(10):874–5. https://doi.org/10.1002/jps.2600501018.

    Article  CAS  PubMed  Google Scholar 

  51. Mircioiu C, et al. Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics. 2019;11(3). https://doi.org/10.3390/pharmaceutics11030140.

  52. Baskin DG. A historical perspective on the identification of cell types in pancreatic islets of langerhans by staining and histochemical techniques. J Histochem Cytochem. 2015;63(8):543–58. https://doi.org/10.1369/0022155415589119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Graefe C, et al. Optimized Ki-67 staining in murine cells: a tool to determine cell proliferation. Mol Biol Rep. 2019;46(4):4631–43. https://doi.org/10.1007/s11033-019-04851-2.

    Article  CAS  PubMed  Google Scholar 

  54. Upton G, Cook I. “ANOVA,” in A dictionary of statistics, Oxford University Press, 2008.

  55. Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M. Islet architecture: a comparative study. Islets. 2009;1(2):129–36. https://doi.org/10.4161/isl.1.2.9480.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Molecular Pathology Core, Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, for tissue processing and staining service.

Funding

Funding support was provided by the intramural funding programs of the J. Crayton Pruitt Family Department of Biomedical Engineering and the Herbert Wertheim College of Engineering at the University of Florida (E.P.) and by the University of Florida Center for Undergraduate Research, University Scholars Program (K.L.).

Author information

Authors and Affiliations

Authors

Contributions

Data collection and analysis were performed by Kevin C. Ling, D. Walker Hagan, Jorge Santini-González, and Edward A. Phelps. The manuscript was written by Kevin C. Ling and Edward A. Phelps. All authors read and commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Edward A. Phelps.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

The study did not involve human subjects. All institutional and national guidelines for the care and use of laboratory animals were followed.

Consent for publication

All authors read and approved the final manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1408 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, K.C., Hagan, D.W., Santini-González, J. et al. Effects of sustained GABA releasing implants on pancreatic islets in mice. Drug Deliv. and Transl. Res. 11, 2198–2208 (2021). https://doi.org/10.1007/s13346-020-00886-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00886-2

Navigation