Skip to main content

Advertisement

Log in

Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Nanomedicine is a rapidly emerging field with several breakthroughs in the therapeutic drug delivery application. The unique properties of the nanoscale delivery systems offer huge advantages to their payload such as solubilization, increased bioavailability, and improved pharmacokinetics with an overall goal of enhanced therapeutic index. Nanomedicine has the potential for integrating and enabling new therapeutic modalities. Several nanoparticle-based drug delivery systems have been granted approval for clinical use based on their outstanding clinical outcomes. Nanomedicine faces several challenges that hinder the realization of its full potential. In this review, we discuss the critical formulation- and biological-related quality features that significantly influence the performance of nanoparticulate systems in vivo. We also discuss the quality-by-design approach in the pharmaceutical manufacturing and its implementation in the nanomedicine. A deep understanding of these nanomedicine quality checkpoints and a systematic design that takes them into consideration will hopefully expedite the clinical translation process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADCs:

Antibody-drug conjugates

AuNPs:

Gold nanoparticles

BBB:

Blood-brain barrier

BxPC3:

Human pancreatic cancer cell line

cGMP:

Current good manufacturing practice

CNS:

Central nervous system

C26:

Colon adenocarcinoma

CMAs:

Critical material attributes

CPPs:

Critical process parameters

CQAs:

Critical quality attributes

CS:

Control strategy

DoE:

Design of experiment

DP:

Drug product

DS:

Design space

EPR:

Enhanced permeation and retention

FDA:

Food and Drug Administration

FMEA:

Failure mode and effect analysis

GSH:

Glutathione

HER-2:

Human epidermal growth factor receptor 2

ICH:

International Conference of Harmonization

MPS:

Mononuclear phagocytic system

PAT:

Process analytical technology

PEG:

Polyethylene glycol

PK:

Pharmacokinetics

PLGA:

Poly (lactic-co-glycolic acid)

QbD:

Quality-by-design

QTPP:

Quality target product profile

RES:

Reticuloendothelial system

siRNA:

Small interfering RNA

SNEDDS:

Self-nanoemulsifying drug delivery systems

TAMs:

Tumor-associated macrophages

TPP:

Target product profile

References

  1. Webster TJ. Nanomedicine: what's in a definition? Int J Nanomedicine. 2006;1(2):115–6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang N, et al. A spherical nucleic acid-based two-photon nanoprobe for RNase H activity assay in living cells and tissues. Nanoscale. 2019;11(17):8133–7.

    Article  CAS  PubMed  Google Scholar 

  3. Lewis JM, Vyas AD, Qiu Y, Messer KS, White R, Heller MJ. Integrated analysis of exosomal protein biomarkers on alternating current electrokinetic chips enables rapid detection of pancreatic cancer in patient blood. ACS Nano. 2018;12(4):3311–20.

    Article  CAS  PubMed  Google Scholar 

  4. Yasui T, Yanagida T, Ito S, Konakade Y, Takeshita D, Naganawa T, et al. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Sci Adv. 2017;3(12):e1701133.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Peng B, et al. Ultrabright fluorescent cellulose acetate nanoparticles for imaging tumors through systemic and topical applications. Mater Today. 2019;23:16–25.

    Article  CAS  Google Scholar 

  6. Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol Imaging. 2015;10(5):329–55.

    Article  CAS  PubMed  Google Scholar 

  7. Park J, Xu M, Li F, Zhou HC. 3D long-range triplet migration in a water-stable metal–organic framework for upconversion-based ultralow-power in vivo imaging. J Am Chem Soc. 2018;140(16):5493–9.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang Y, et al. Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv Mater. 2019;31(11):1808166.

    Article  CAS  Google Scholar 

  9. Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HE. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine. 2018;13:5637–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fathi-Achachelouei M, et al. Use of nanoparticles in tissue engineering and regenerative medicine. Front Bioeng Biotech. 2019:7(113).

  11. Kouhi M, et al. Bredigite reinforced electrospun nanofibers for bone tissue engineering. Materials Today: Proceedings. 2019;7:449–54.

    CAS  Google Scholar 

  12. Sahoo S, et al. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A. 2010;93A(4):1539–50.

    CAS  Google Scholar 

  13. Shevach M, et al. Nanoengineering gold particle composite fibers for cardiac tissue engineering. J Mater Chem B. 2013;1(39):5210–7.

    Article  CAS  PubMed  Google Scholar 

  14. Fleischer S, Shevach M, Feiner R, Dvir T. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues. Nanoscale. 2014;6(16):9410–4.

    Article  CAS  PubMed  Google Scholar 

  15. You C, Li Q, Wang X, Wu P, Ho JK, Jin R, et al. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep. 2017;7(1):10489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Marsich E, Bellomo F, Turco G, Travan A, Donati I, Paoletti S. Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. J Mater Sci Mater Med. 2013;24(7):1799–807.

    Article  CAS  PubMed  Google Scholar 

  17. Lopes-de-Campos D, Pinto RM, Lima SAC, Santos T, Sarmento B, Nunes C, et al. Delivering amoxicillin at the infection site—a rational design through lipid nanoparticles. Int J Nanomedicine. 2019;14:2781–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Galindo-Rodriguez SA, et al. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. 2005;22(5):419–64.

  19. Tsai L-C, Chen CH, Lin CW, Ho YC, Mi FL. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Int J Biol Macromol. 2019;126:141–50.

    Article  CAS  PubMed  Google Scholar 

  20. Talegaonkar S, Bhattacharyya A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech. 2019;20(3):121.

    Article  PubMed  CAS  Google Scholar 

  21. Mazumder S, Dewangan AK, Pavurala N. Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian J Pharm Sci. 2017;12(6):532–41.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of nanoparticles. Nat Biotechnol. 2007;25(10):1165–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ponnuswamy N, et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat Commun. 2017;8:15654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li S-D, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5(4):496–504.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, et al. Targeted codelivery of an antigen and dual agonists by hybrid nanoparticles for enhanced Cancer immunotherapy. Nano Lett. 2019;19(7):4237–49.

    Article  CAS  PubMed  Google Scholar 

  27. Sun W, et al. Synergistic triple-combination therapy with hyaluronic acid-shelled PPy/CPT nanoparticles results in tumor regression and prevents tumor recurrence and metastasis in 4T1 breast cancer. Biomaterials. 2019;217:119264.

    Article  CAS  PubMed  Google Scholar 

  28. Xu J, et al. Quinic acid-conjugated nanoparticles enhance drug delivery to solid tumors via interactions with endothelial Selectins. Small. 2018;14(50):1803601.

    Article  CAS  Google Scholar 

  29. Shevtsov M, et al. Granzyme B functionalized nanoparticles targeting membrane Hsp70-positive tumors for multimodal cancer theranostics. Small. 2019;15(13):1900205.

    Article  CAS  Google Scholar 

  30. Hua, S., et al., Current Trends and Challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol, 2018. 9(790).

  31. Yadav, H.K.S., et al., Chapter 17 - polymer-based nanomaterials for drug-delivery carriers, in nanocarriers for drug delivery, S.S. mohapatra, et al., Editors. 2019, Elsevier. p. 531–556.

  32. Miao T, Wang J, Zeng Y, Liu G, Chen X. Polysaccharide-based controlled release systems for therapeutics delivery and tissue engineering: from bench to bedside. Advanced Science. 2018;5(4):1700513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seifu MF, Nath LK. Polymer-drug conjugates: novel carriers for cancer chemotherapy. Polymer Plast Technol Mater. 2019;58(2):158–71.

    Article  CAS  Google Scholar 

  35. Gregoriadis G, Florence AT. Liposomes in drug delivery. Drugs. 1993;45(1):15–28.

    Article  CAS  PubMed  Google Scholar 

  36. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5(3):305–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao Y, Huang L. Lipid nanoparticles for gene delivery. Adv Genet. 2014;88:13–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. El-Zahaby SA, et al. Development of a novel solid self-nano-emulsifying osmotically controlled system of a centrally acting drug: preparation and in-vitro evaluation. Inventi Impact: NDDS. 2016;1:35–49.

    Google Scholar 

  39. Giner-Casares JJ, et al. Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Mater Today. 2016;19(1):19–28.

    Article  CAS  Google Scholar 

  40. Chakravarty, R., et al., Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: an overview. The Quarterly Journal of Nuclear Medicine and Molecular Imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of... 2017. 61(2): p. 181–204.

  41. Nune SK, Gunda P, Thallapally PK, Lin YY, Forrest ML, Berkland CJ. Nanoparticles for biomedical imaging. Expert Opin Drug Del. 2009;6(11):1175–94.

    Article  CAS  Google Scholar 

  42. Kosaka N, et al. Real-time optical imaging using quantum dot and related nanocrystals. Nanomedicine (London, England). 2010;5(5):765–76.

    Article  CAS  Google Scholar 

  43. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev. 2012;41(7):2943–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77(7):2325–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Al-Ahmady ZS, et al. Enhanced intra-liposomal metallic nanoparticle payload capacity using microfluidics assisted self-assembly. Langmuir. 2019.

  46. Hao Y, Zhang B, Zheng C, Ji R, Ren X, Guo F, et al. The tumor-targeting core–shell structured DTX-loaded PLGA@Au nanoparticles for chemo-photothermal therapy and X-ray imaging. J Control Release. 2015;220:545–55.

    Article  CAS  PubMed  Google Scholar 

  47. Khan MM, Madni A, Torchilin V, Filipczak N, Pan J, Tahir N, et al. Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Deliv. 2019;26(1):765–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haidar ZS, Hamdy RC, Tabrizian M. Protein release kinetics for core–shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials. 2008;29(9):1207–15.

    Article  CAS  PubMed  Google Scholar 

  49. Cook J. Nanoparticles approved in the United States (US) and Europe (EU) for Medical Applications. 2017 11/2019]; Available from: https://nanohybrids.net/blogs/nanoparticles/fda-ema-approved-nanoparticles.

  50. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10–29.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Desai, N., Nab technology: a drug delivery platform utilising endothelial gp60 receptor-based transport and tumour-derived SPARC for targeting drug delivery report. 2008. 2007/2008: p. 37–41.

  52. Desai N, Trieu V, Damascelli B, Soon-Shiong P. SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl Oncol. 2009;2(2):59–64.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen EC, Fathi AT, Brunner AM. Reformulating acute myeloid leukemia: liposomal cytarabine and daunorubicin (CPX-351) as an emerging therapy for secondary AML. OncoTargets Ther. 2018;11:3425–34.

    Article  Google Scholar 

  54. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87.

    Article  CAS  PubMed  Google Scholar 

  55. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioengineering Transla Med. 2019;4(3):e10143.

    Google Scholar 

  56. Kumar, G.L., FDA-approved targeted therapies in oncology, in predictive biomarkers in oncology: applications in precision medicine, S. Badve and G.L. Kumar, Editors. 2019, Springer International Publishing: Cham p 605-622.

  57. Sengupta S. Cancer nanomedicine: lessons for immuno-oncology. Trends in Cancer. 2017;3(8):551–60.

    Article  CAS  PubMed  Google Scholar 

  58. Park K. The beginning of the end of the nanomedicine hype. J Control Release. 2019;10(305):221–2.

    Article  CAS  Google Scholar 

  59. Wilhelm S, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014.

    Article  CAS  Google Scholar 

  60. Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 2014;9(2):223–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liang, Y., Drug release and pharmacokinetic properties of liposomal DB-67, in Graduate school2010, University of Kentucky.

  62. Dunne M, Corrigan I, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials. 2000;21(16):1659–68.

    Article  CAS  PubMed  Google Scholar 

  63. Braet F, Wisse E, Bomans P, Frederik P, Geerts W, Koster A, et al. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc Res Tech. 2007;70(3):230–42.

    Article  PubMed  Google Scholar 

  64. Ballet F. Hepatic circulation: potential for therapeutic intervention. Pharmacol Ther. 1990;47(2):281–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen L-T, Weiss L. The role of the sinus wall in the passage of erythrocytes through the spleen. Blood. 1973;41(4):529–37.

    Article  CAS  PubMed  Google Scholar 

  66. Iyer AK, et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17):812–8.

    Article  CAS  PubMed  Google Scholar 

  67. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6(12):815–23.

    Article  CAS  PubMed  Google Scholar 

  68. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377(Pt 1):159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guo X, et al. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog Mater Sci. 2020;107:100599.

    Article  CAS  Google Scholar 

  70. Nowak M, Helgeson ME, Mitragotri S. Delivery of nanoparticles and macromolecules across the blood–brain barrier. Adv Ther. 2019;0(0):1900073.

    Google Scholar 

  71. Pei Y, Mohamed MF, Seleem MN, Yeo Y. Particle engineering for intracellular delivery of vancomycin to methicillin-resistant Staphylococcus aureus (MRSA)-infected macrophages. J Control Release. 2017;267:133–43.

    Article  CAS  PubMed  Google Scholar 

  72. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Laine GA, et al. Polyethylene glycol nephrotoxicity secondary to prolonged high-dose intravenous Lorazepam. Ann Pharmacother. 1995;29(11):1110–4.

    Article  CAS  PubMed  Google Scholar 

  74. Rocca JD, Liu D, Lin W. Are high drug loading nanoparticles the next step forward for chemotherapy? Nanomedicine (London, England). 2012;7(3):303–5.

    Article  CAS  Google Scholar 

  75. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.

    Article  CAS  PubMed  Google Scholar 

  76. Radwan MA. In vitro evaluation of Polyisobutylcyanoacrylate nanoparticles as a controlled drug carrier for theophylline. Drug Dev Ind Pharm. 1995;21(20):2371–5.

    Article  CAS  Google Scholar 

  77. Liu L, Ma P, Wang H, Zhang C, Sun H, Wang C, et al. Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles. J Control Release. 2016;225:230–9.

    Article  CAS  PubMed  Google Scholar 

  78. Kufleitner J, Wagner S, Worek F, von Briesen H, Kreuter J. Adsorption of obidoxime onto human serum albumin nanoparticles: drug loading, particle size and drug release. J Microencapsul. 2010;27(6):506–13.

    Article  CAS  PubMed  Google Scholar 

  79. O'Hagan D, Singh M, Ugozzoli M, Wild C, Barnett S, Chen M, et al. Induction of potent immune responses by cationic microparticles with adsorbed human immunodeficiency virus DNA vaccines. J Virol. 2001;75(19):9037–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dragojevic S, Ryu J, Raucher D. Polymer-based prodrugs: improving tumor targeting and the solubility of small molecule drugs in Cancer therapy. Molecules. 2015;20(12):19804.

    Article  CAS  Google Scholar 

  81. Cholkar, K., et al., Chapter 1—therapeutic applications of polymeric materials, in emerging nanotechnologies for diagnostics, drug delivery and medical devices2017, Elsevier: Boston. p. 1–19.

  82. Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J Control Release. 2001;70(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  83. Xu, X., G.R. Shan, and P. Pan, Controlled co-delivery of hydrophilic and hydrophobic drugs from thermosensitive and crystallizable copolymer nanoparticles. J Appl Polym Sci, 2016. 133(42): p. n/a-n/a.

  84. Tao X, et al. Effects of particle hydrophobicity, surface charge, media ph value and complexation with human serum albumin on drug release behavior of mitoxantrone-loaded pullulan nanoparticles. Nanomaterials. 2016:6(1).

  85. Kim JO, Kabanov AV, Bronich TK. Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J Control Release. 2009;138(3):197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Diab R, Jaafar-Maalej C, Fessi H, Maincent P. Engineered nanoparticulate drug delivery systems: the next frontier for oral administration? AAPS J. 2012;14(4):688–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly (ethylene glycol) for doxorubicin delivery. J Control Release. 2004;98(3):415–26.

    Article  CAS  PubMed  Google Scholar 

  88. Glavas L, Olsén P, Odelius K, Albertsson AC. Achieving micelle control through core crystallinity. Biomacromolecules. 2013;14(11):4150–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu KC, Yeo Y. Extracellular stability of nanoparticulate drug carriers. Arch Pharm Res. 2014;37(1):16–23.

    Article  PubMed  CAS  Google Scholar 

  90. Ao L, Reichel D, Hu D, Jeong H, Kim KB, Bae Y, et al. Polymer micelle formulations of proteasome inhibitor Carfilzomib for improved metabolic stability and anticancer efficacy in human multiple myeloma and lung cancer cell lines. J Pharmacol Exp Ther. 2015;355(2):168–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Park JE, Chun SE, Reichel D, Min JS, Lee SC, Han S, et al. Polymer micelle formulation for the proteasome inhibitor drug carfilzomib: anticancer efficacy and pharmacokinetic studies in mice. PLoS One. 2017;12(3):e0173247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, Ueno H, et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer. 2007;97(2):170–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane(®) ABI-007) in the treatment of breast cancer. Int J Nanomedicine. 2009;4:99–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Garcia AA, Kempf RA, Rogers M, Muggia FM. A phase II study of Doxil (liposomal doxorubicin): lack of activity in poor prognosis soft tissue sarcomas. Ann Oncol. 1998;9(10):1131–3.

    Article  CAS  PubMed  Google Scholar 

  95. Ellerhorst JA, Bedikian A, Ring S, Buzaid AC, Eton O, Legha SS. Phase II trial of doxil for patients with metastatic melanoma refractory to frontline therapy. Oncol Rep. 1999;6(5):1097–9.

    CAS  PubMed  Google Scholar 

  96. Andresen TL, Jensen SS, Jørgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res. 2005;44(1):68–97.

    Article  CAS  PubMed  Google Scholar 

  97. Kareva I, Waxman DJ, Lakka Klement G. Metronomic chemotherapy: an attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance. Cancer Lett. 2015;358(2):100–6.

    Article  CAS  PubMed  Google Scholar 

  98. Jyoti A, et al. An in vitro assessment of liposomal topotecan simulating metronomic chemotherapy in combination with radiation in tumor-endothelial spheroids. Sci Rep. 2015;5:15236–6.

  99. Haran G, et al. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta Biomembr. 1993;1151(2):201–15.

    Article  CAS  Google Scholar 

  100. Hu J, Guo J, Xie Z, Shan D, Gerhard E, Qian G, et al. Fluorescence imaging enabled poly (lactide-co-glycolide). Acta Biomater. 2016;29:307–19.

    Article  CAS  PubMed  Google Scholar 

  101. Weinkauf DH and Paul DR. Effects of structural order on barrier properties, in barrier polymers and structures1990, American Chemical Society p 60-91.

  102. Karavelidis V, Karavas E, Giliopoulos D, Papadimitriou S, Bikiaris D. Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior. Int J Nanomedicine. 2011;6:3021–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Saltzman WM. Drug delivery : engineering principles for drug therapy2001, Cary, UNITED STATES: Oxford University Press USA - OSO.

  104. Alavizadeh SH, et al. The influence of phospholipid on the physicochemical properties and anti-tumor efficacy of liposomes encapsulating cisplatin in mice bearing C26 colon carcinoma. Int J Pharm. 2014;473(1):326–33.

    Article  CAS  PubMed  Google Scholar 

  105. Aguilar, Z.P., Chapter 5—targeted drug delivery, in nanomaterials for medical applications, Z.P. Aguilar, Editor 2013, Elsevier. p. 181–234.

  106. Lu X.-Y., et al., Chpater 7—polymer nanoparticles, in progress in molecular biology and translational science, A. Villaverde, Editor 2011, Academic Press. p. 299–323.

  107. Rijcken Cristianne, J.F., et al., Therapeutic nanomedicine: cross linked micelles with transiently linked drugs—a versatile drug delivery system, in Eur J Nanomed 2010. p. 19.

  108. Tao X, Zhang Q, Ling K, Chen Y, Yang W, Gao F, et al. Effect of pullulan nanoparticle surface charges on HSA complexation and drug release behavior of HSA-bound nanoparticles. PLoS One. 2012;7(11):e49304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Taha MS, et al. Sustained delivery of Carfilzomib by tannic acid-based nanocapsules helps develop antitumor immunity. Nano Lett. 2019.

  110. Zhang L, et al. Self-assembled lipid−polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008;2(8):1696–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Crielaard BJ, et al. Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew Chem Int Ed Eng. 2012;51(29):7254–8.

    Article  CAS  Google Scholar 

  112. Tong R, Cheng J. Paclitaxel-initiated, controlled polymerization of Lactide for the formulation of polymeric nanoparticulate delivery vehicles. Angew Chem Int Ed. 2008;47(26):4830–4.

    Article  CAS  Google Scholar 

  113. Tsukamoto T, et al. Preparation of bromfenac-loaded liposomes modified with chitosan for ophthalmic drug delivery and evaluation of physicochemical properties and drug release profile. Asian J Pharm Sci. 2013;8(2):104–9.

    Article  CAS  Google Scholar 

  114. Holkar CR, et al., Chapter 14—scale-up technologies for advanced nanomaterials for green energy: feasibilities and challenges, in nanomaterials for green energy, B.A. Bhanvase, et al., Editors. 2018, Elsevier. p. 433–455.

  115. Dormont F, Rouquette M, Mahatsekake C, Gobeaux F, Peramo A, Brusini R, et al. Translation of nanomedicines from lab to industrial scale synthesis: the case of squalene-adenosine nanoparticles. J Control Release. 2019;307:302–14.

    Article  CAS  PubMed  Google Scholar 

  116. Sepulveda CA, et al. Establishing a GMP manufacturing site for nanoparticles. NSTI nanotechnology conference and trade show - NSTI nanotech 2007. Technical Proceedings. 2007;2:413–6.

    CAS  Google Scholar 

  117. Coty J-B, Vauthier C. Characterization of nanomedicines: a reflection on a field under construction needed for clinical translation success. J Control Release. 2018;275:254–68.

    Article  CAS  PubMed  Google Scholar 

  118. Galindo-Rodríguez SA, et al. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci. 2005;25(4):357–67.

    Article  PubMed  CAS  Google Scholar 

  119. Soares S, et al. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano. 2011;5(9):7503–9.

    Article  CAS  PubMed  Google Scholar 

  121. Rezaei G, Daghighi SM, Haririan I, Yousefi I, Raoufi M, Rezaee F, et al. Protein corona variation in nanoparticles revisited: a dynamic grouping strategy. Colloids Surf B: Biointerfaces. 2019;179:505–16.

    Article  CAS  PubMed  Google Scholar 

  122. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8(7):543–57.

    Article  CAS  PubMed  Google Scholar 

  123. Chen D, Ganesh S, Wang W, Amiji M. The role of surface chemistry in serum protein corona-mediated cellular delivery and gene silencing with lipid nanoparticles. Nanoscale. 2019;11(18):8760–75.

    Article  CAS  PubMed  Google Scholar 

  124. Phogat N, et al., Chapter 11—interaction of nanoparticles with biomolecules, protein, enzymes, and its applications, in precision medicine, H.-P. Deigner and M. Kohl, Editors. 2018, Academic Press. p. 253–276.

  125. Gunawan C, et al. Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. J Mater Chem B. 2014;2(15):2060–83.

    Article  CAS  PubMed  Google Scholar 

  126. Tenzer S, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8:772.

    Article  CAS  PubMed  Google Scholar 

  127. Salvati A, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8:137.

    Article  CAS  PubMed  Google Scholar 

  128. Lundqvist M, Augustsson C, Lilja M, Lundkvist K, Dahlbäck B, Linse S, et al. The nanoparticle protein corona formed in human blood or human blood fractions. PLoS One. 2017;12(4):e0175871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Xiao W, Gao H. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int J Pharm. 2018;552(1–2):328–39.

    Article  CAS  PubMed  Google Scholar 

  130. Tonigold M, Simon J, Estupiñán D, Kokkinopoulou M, Reinholz J, Kintzel U, et al. Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nat Nanotechnol. 2018;13(9):862–9.

    Article  CAS  PubMed  Google Scholar 

  131. Safavi-Sohi R, Maghari S, Raoufi M, Jalali SA, Hajipour MJ, Ghassempour A, et al. Bypassing protein corona issue on active targeting: Zwitterionic coatings dictate specific interactions of targeting moieties and cell receptors. ACS Appl Mater Interfaces. 2016;8(35):22808–18.

    Article  CAS  PubMed  Google Scholar 

  132. Guan J, Shen Q, Zhang Z, Jiang Z, Yang Y, Lou M, et al. Enhanced immunocompatibility of ligand-targeted liposomes by attenuating natural IgM absorption. Nat Commun. 2018;9(1):2982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Zhang Z, Guan J, Jiang Z, Yang Y, Liu J, Hua W, et al. Brain-targeted drug delivery by manipulating protein corona functions. Nat Commun. 2019;10(1):3561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Oh JY, Kim HS, Palanikumar L, Go EM, Jana B, Park SA, et al. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat Commun. 2018;9(1):4548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Corbo C, Molinaro R, Tabatabaei M, Farokhzad OC, Mahmoudi M. Personalized protein corona on nanoparticles and its clinical implications. Biomater Sci. 2017;5(3):378–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shahabi S, et al. Modulation of silica nanoparticle uptake into human osteoblast cells by variation of the ratio of amino and Sulfonate surface groups: effects of serum. ACS Appl Mater Interfaces. 2015;7(25):13821–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pillai GJ, Greeshma MM, Menon D. Impact of poly (lactic-co-glycolic acid) nanoparticle surface charge on protein, cellular and haematological interactions. Colloids Surf B: Biointerfaces. 2015;136:1058–66.

    Article  CAS  PubMed  Google Scholar 

  138. Elci SG, Jiang Y, Yan B, Kim ST, Saha K, Moyano DF, et al. Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano. 2016;10(5):5536–42.

    Article  CAS  PubMed  Google Scholar 

  139. Fromen CA, Rahhal TB, Robbins GR, Kai MP, Shen TW, Luft JC, et al. Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine. 2016;12(3):677–87.

    Article  CAS  PubMed  Google Scholar 

  140. Quan X, Peng C, Zhao D, Li L, Fan J, Zhou J. Molecular understanding of the penetration of functionalized gold nanoparticles into asymmetric membranes. Langmuir. 2017;33(1):361–71.

    Article  CAS  PubMed  Google Scholar 

  141. Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577–91.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Shao XR, et al. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif. 2015;48(4):465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sohail MF, et al. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends. Int J Nanomedicine. 2018;13:3145–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Poovi G, Damodharan N. Lipid nanoparticles: a challenging approach for oral delivery of BCS class-II drugs. Future J Pharm Sci. 2018;4(2):191–205.

    Article  Google Scholar 

  145. Narayanan D, Pillai GJ, Nair SV, Menon D. Effect of formulation parameters on pharmacokinetics, pharmacodynamics, and safety of diclofenac nanomedicine. Drug Deliv Transl Res. 2019;9(5):867–78.

    Article  CAS  PubMed  Google Scholar 

  146. Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B. 2016;6(4):268–86.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zeeshan M. et al. A boon to the brain-targeted drug delivery. Pharmaceutical formulation design—recent practices: Nanopharmaceuticals; 2019.

    Google Scholar 

  148. Padmakumar S, Parayath N, Leslie F, Nair SV, Menon D, Amiji MM. Intraperitoneal chemotherapy for ovarian cancer using sustained-release implantable devices. Expert Opin Drug Del. 2018;15(5):481–94.

    Article  CAS  Google Scholar 

  149. Padmakumar S, Paul-Prasanth B, Pavithran K, Vijaykumar DK, Rajanbabu A, Sivanarayanan TB, et al. Long-term drug delivery using implantable electrospun woven polymeric nanotextiles. Nanomedicine. 2019;15(1):274–84.

    Article  CAS  PubMed  Google Scholar 

  150. Rai, P. and S.A. Morris, Nanotheranostics for cancer applications2019, Springer.

  151. Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley interdisciplinary reviews. Nanomed Nanobi. 2013;5(3):205–18.

    Article  CAS  Google Scholar 

  152. Raju G, Katiyar N, Vadukumpully S, Shankarappa SA. Penetration of gold nanoparticles across the stratum corneum layer of thick-skin. J Dermatol Sci. 2018;89(2):146–54.

    Article  CAS  PubMed  Google Scholar 

  153. Palmer, B.C. and L.A. DeLouise, Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules, 2016. 21(12).

  154. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev. 2004;56(5):675–711.

    Article  CAS  PubMed  Google Scholar 

  155. Bhatia A, et al. Tamoxifen-loaded novel liposomal formulations: evaluation of anticancer activity on DMBA-TPA induced mouse skin carcinogenesis. J Drug Target. 2012;20(6):544–50.

    Article  CAS  PubMed  Google Scholar 

  156. Krause P, et al. Pharmacokinetics of intravesical versus oral oxybutynin in healthy adults: results of an open label, randomized, prospective clinical study. J Urol. 2013;190(5):1791–7.

    Article  CAS  PubMed  Google Scholar 

  157. Zacchè MM, Srikrishna S, Cardozo L. Novel targeted bladder drug-delivery systems: a review. Res Rep Urol. 2015;7:169–78.

    PubMed  PubMed Central  Google Scholar 

  158. Kates M, Date A, Yoshida T, Afzal U, Kanvinde P, Babu T, et al. Preclinical evaluation of Intravesical cisplatin nanoparticles for non-muscle-invasive bladder cancer. Clin Cancer Res. 2017;23(21):6592–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lu Z, Yeh TK, Tsai M, Au JL, Wientjes MG. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin Cancer Res. 2004;10(22):7677–84.

    Article  CAS  PubMed  Google Scholar 

  160. van Vlerken LE, Amiji MM. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Del. 2006;3(2):205–16.

    Article  Google Scholar 

  161. Ojha T, et al. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv Drug Deliv Rev. 2017;119:44–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.

    Article  CAS  PubMed  Google Scholar 

  163. Rosenblum D, et al. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Rahman AM, Yusuf SW, Ewer MS. Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation. Int J Nanomedicine. 2007;2(4):567–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Li C, et al. Dual-ligand modification of PEGylated liposomes used for targeted doxorubicin delivery to enhance anticancer efficacy. AAPS Pharm Sci Tech. 2019;20(5):019–1385.

    Article  CAS  Google Scholar 

  166. Agrahari V, Agrahari V. Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discov Today. 2018;23(5):974–91.

    Article  PubMed  Google Scholar 

  167. Zhou L, Wang H, Li Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics. 2018;8(4):1059–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang S, Huang P, Chen X. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano. 2016;10(3):2991–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shankarappa SA, Koyakutty M, Nair SV. Efficacy versus toxicity—the Ying and Yang in translating nanomedicines. Nanomater Nanotechno. 2014;4:23.

    Article  CAS  Google Scholar 

  170. Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: challenges, considerations and strategy. J Control Release. 2015;220(Pt B):571–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Arima A, Tsutsui M, Harlisa IH, Yoshida T, Tanaka M, Yokota K, et al. Selective detections of single-viruses using solid-state nanopores. Sci Rep. 2018;8(1):16305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Caracciolo G, Farokhzad OC, Mahmoudi M. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 2017;35(3):257–64.

    Article  CAS  PubMed  Google Scholar 

  175. Bastogne T. Quality-by-design of nanopharmaceuticals—a state of the art. Nanomedicine. 2017;13(7):2151–7.

    Article  CAS  PubMed  Google Scholar 

  176. Xu X, Khan MA, Burgess DJ. A quality by design (QbD) case study on liposomes containing hydrophilic API: I. formulation, processing design and risk assessment. Int J Pharm. 2011;419(1–2):52–9.

    Article  CAS  PubMed  Google Scholar 

  177. Xu X, Khan MA, Burgess DJ. A quality by design (QbD) case study on liposomes containing hydrophilic API: II. Screening of critical variables, and establishment of design space at laboratory scale. Int J Pharm. 2012;423(2):543–53.

    Article  CAS  PubMed  Google Scholar 

  178. Xu X, Costa AP, Khan MA, Burgess DJ. Application of quality by design to formulation and processing of protein liposomes. Int J Pharm. 2012;434(1–2):349–59.

    Article  CAS  PubMed  Google Scholar 

  179. Pallagi E, et al. Application of the QbD-based approach in the early development of liposomes for nasal administration. Int J Pharm. 2019;562:11–22.

    Article  CAS  PubMed  Google Scholar 

  180. Amasya G, Aksu B, Badilli U, Onay-Besikci A, Tarimci N. QbD guided early pharmaceutical development study: production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int J Pharm. 2019;563:110–21.

    Article  CAS  PubMed  Google Scholar 

  181. Iurian S, Bogdan C, Tomuță I, Szabó-Révész P, Chvatal A, Leucuța SE, et al. Development of oral lyophilisates containing meloxicam nanocrystals using QbD approach. Eur J Pharm Sci. 2017;104:356–65.

    Article  CAS  PubMed  Google Scholar 

  182. Kumar S, Gokhale R, Burgess DJ. Quality by design approach to spray drying processing of crystalline nanosuspensions. Int J Pharm. 2014;464(1–2):234–42.

    Article  CAS  PubMed  Google Scholar 

  183. Narayan R, Pednekar A, Bhuyan D, Gowda C, Koteshwara KB, Nayak UY. A top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studies. Int J Nanomedicine. 2017;12:4921–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Shirsat AE, Chitlange SS. Application of quality by design approach to optimize process and formulation parameters of rizatriptan loaded chitosan nanoparticles. J Adv Pharm Technol Res. 2015;6(3):88–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Park SJ, et al. Quality by design: screening of critical variables and formulation optimization of Eudragit E nanoparticles containing dutasteride. Arch Pharm Res. 2013;36(5):593–601.

    Article  CAS  PubMed  Google Scholar 

  186. Troiano G, Nolan J, Parsons D, van Geen Hoven C, Zale S. A quality by design approach to developing and manufacturing polymeric nanoparticle drug products. AAPS J. 2016;18(6):1354–65.

    Article  CAS  PubMed  Google Scholar 

  187. Cun D, Jensen DK, Maltesen MJ, Bunker M, Whiteside P, Scurr D, et al. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization. Eur J Pharm Biopharm. 2011;77(1):26–35.

    Article  CAS  PubMed  Google Scholar 

  188. Kola Srinivas NS, et al. A quality by design approach on polymeric nanocarrier delivery of gefitinib: formulation, in vitro, and in vivo characterization. Int J Nanomedicine. 2017;12:15–28.

    Article  PubMed  Google Scholar 

  189. Medarevic D, et al. Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling. Int J Pharm. 2018;540(1–2):150–61.

    Article  CAS  PubMed  Google Scholar 

  190. Rawal M, Singh A, Amiji MM. Quality-by-design concepts to improve nanotechnology-based drug development. Pharm Res. 2019;36(11):153.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor M. Amiji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, M., Padmakumar, S., Singh, A. et al. Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation. Drug Deliv. and Transl. Res. 10, 766–790 (2020). https://doi.org/10.1007/s13346-020-00744-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00744-1

Keywords

Navigation