Skip to main content
Log in

A solvent-assisted active loading technology to prepare gambogic acid and all-trans retinoic acid co-encapsulated liposomes for synergistic anticancer therapy

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Liposomal drug delivery has become an established technology platform to deliver dual drugs to produce synergistic effects and reduce the adverse effects of traditional chemotherapy. Gambogic acid (GA) and retinoic acid (RA) are both effective anticancer components, but their low water-solubility (gambogic acid < 0.0050 mg/mL, retinoic acid 0.0048 < mg/mL) makes it difficult to load both drugs into the liposomes actively using the conventional method. We have successfully used solvent-assisted active loading technology (SALT) to load the insoluble drugs into the internal water phase via water-miscible organic solvent. Gambogic acid and retinoic acid co-encapsulated liposomes (weight ratio of GA to RA = 1:2, GRL) exhibited the strongest synergistic effect; combination index (CI) was 0.614 in 4T1 cells. Our studies demonstrated that GRL had uniform droplet size of about 130 nm, high stability, and controlled release behavior. GRL outperformed gambogic acid and retinoic acid solution (GRS) in pharmacokinetic profiles for a longer half-life and increased AUC. Comparing to GRS, GL, and RL, GRL showed increased cytotoxicity and apoptosis in 4T1 cells and showed the strongest anti-tumor ability in the in vivo anti-tumor efficacy. Overall, the SALT was a promising method to active loading poorly soluble drugs into liposomes, and the results showed GRL possessed a great potential for use in synergistic anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

DSPC:

1, 2-distearoyl-sn-glycero-3-phosphocholine

CHO:

Cholesterol

DSPE-PEG2000 :

2-distearoyl-snglycero-3-phosphoethanolamine-N-[methyl (polyethylene glycol)-2000

GA:

Gambogic acid

RA:

Retinoic acid

References

  1. Doddapaneni R, Patel K, Owaid IH, Singh M. Tumor neovasculature-targeted cationic PEGylated liposomes of gambogic acid for the treatment of triple-negative breast cancer. Drug Deliv. 2016;23(4):1–10.

    Article  Google Scholar 

  2. Yu F, Tang X. Novel long-circulating liposomes consisting of PEG modified β-Sitosterol for gambogic acid delivery. J Nanosci Nanotechnol. 2016;16(3):3115–21.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang LL, Kang L, Lin QH, Jian R, He ZH, Li H, et al. Gambogic acid causes fin developmental defect in zebrafish embryo partially via retinoic acid signaling. Reprod Toxicol. 2016;63:161–8.

    Article  CAS  PubMed  Google Scholar 

  4. Cristiano MC, Cosco D, Celia C, Tudose A, Mare R, Paolino D, et al. Anticancer activity of all-trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids Surf B: Biointerfaces. 2016;150:408.

    Article  PubMed  Google Scholar 

  5. Kawakami S, Suzuki S, Yamashita F, Hashida M. Induction of apoptosis in A549 human lung cancer cells by all- trans retinoic acid incorporated in DOTAP/cholesterol liposomes. J Control Release. 2006;110(3):514–21.

    Article  CAS  PubMed  Google Scholar 

  6. Yao J, Li Y, Sun X, Dahmani FZ, Liu H, Zhou J. Nanoparticle delivery and combination therapy of gambogic acid and all-trans retinoic acid. Int J Nanomedicine. 2014;2014(Issue 1):3313–24.

    Article  Google Scholar 

  7. Liu L, Qi XJ, Zhong ZK, Zhang EN. Nanomedicine-based combination of gambogic acid and retinoic acid chlorochalcone for enhanced anticancer efficacy in osteosarcoma. Biomed Pharmacother. 2016;83:79–84.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng Y, Zhao P, Wu S, Yang T, Chen Y, Zhang X, et al. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int J Pharm. 2018;545(1–2):261–73.

    Article  CAS  PubMed  Google Scholar 

  9. He RX, Ye X, Li R, Chen W, Ge T, Huang TQ, et al. PEGylated niosomes-mediated drug delivery systems for paeonol:preparation, pharmacokinetics studies and synergistic anti-tumor effects with 5-FU. J Liposome Res. 2016;27(2):161–70.

    Article  PubMed  Google Scholar 

  10. Jiang K, Shen M, Xu W. Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: in vitro/vivo evaluation. Int J Nanomedicine. 2018;13:2561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu Z, Chen Q, Yang Y, Lin X, Ma W, Chen G et al. Platinum (IV) prodrugs with long lipid chains for drug delivery and overcoming cisplatin resistance. Chem Commun 2018;54(42):https://doi.org/10.1039/C8CC02791A.

    Article  CAS  PubMed  Google Scholar 

  12. Langton MJ, Scriven LM, Williams NH, Hunter CA. Triggered release from lipid bilayer vesicles by an artificial transmembrane signal transduction system. J Am Chem Soc. 2017;139(44):15768–73.

    Article  CAS  PubMed  Google Scholar 

  13. Hu CMJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83(8):1104–11.

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Fang J, Kim YJ, Wong MK, Wang P. Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol Pharm. 2014;11(5):1651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han X, Chen J, Jiang M, Zhang N, Na K, Luo C, et al. Paclitaxel-paclitaxel prodrug nanoassembly as a versatile nanoplatform for combinational cancer therapy. ACS Appl Mater Interfaces. 2016;8(49):33506–13.

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Lu X, Liu Q, Dai Y, Zhu X, Wen Y, et al. Palmitoyl ascorbate and doxorubicin co-encapsulated liposome for synergistic anticancer therapy. Eur J Pharm Sci. 2017;105:219–29.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Tamam H, Yeo Y. Mixed liposome approach for ratiometric and sequential delivery of paclitaxel and gemcitabine. AAPS PharmSciTech. 2017;141(2):1–7.

    Google Scholar 

  18. Lu L, Du Y, Ismail M, Ling L, Yao C, Fu Z et al. Liposomes assembled from dimeric retinoic acid phospholipid with improved pharmacokinetic properties. Eur J Pharm Sci 2017.

  19. Tefas LR, Sylvester B, Tomuta I, Sesarman A, Licarete E, Banciu M, et al. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des Devel Ther. 2017;11:1605–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv. 2011;8(5):565–80.

    Article  CAS  PubMed  Google Scholar 

  21. Eloy JO, Petrilli R, Chesca DL, Saggioro FP, Lee RJ, Marchetti JM. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur J Pharm Biopharm. 2017;115:159–67.

    Article  CAS  PubMed  Google Scholar 

  22. Modi S, Xiang TX, Anderson BD. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions. J Control Release. 2012;162(2):330–9.

    Article  CAS  PubMed  Google Scholar 

  23. Hayes ME, Noble CO, Szoka FC, inventors; Remote loading of sparingly water-soluble drugs into liposomes 2015.

  24. Tang WL, Tang WH, Szeitz A, Kulkarni J, Cullis P, Li SD. Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery. Biomaterials. 2018;166:13–26.

    Article  CAS  PubMed  Google Scholar 

  25. Tang WL, Chen WC, Roy A, Undzys E, Li SD. A simple and improved active loading method to efficiently encapsulate Staurosporine into lipid-based nanoparticles for enhanced therapy of multidrug resistant cancer. Pharm Res. 2016;33(5):1104–14.

    Article  CAS  PubMed  Google Scholar 

  26. Avnir Y, Ulmansky R, Wasserman V, Evenchen S, Broyer M, Barenholz Y, et al. Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle dog: a novel approach to treating autoimmune arthritis. Arthritis Rheum. 2008;58(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  27. Clerc S, Barenholz Y. Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochim Biophys Acta. 1995;1240(2):257–65.

    Article  PubMed  Google Scholar 

  28. Adamson PC, Balis FM, Smith MA, Murphy RF, Godwin KA, Poplack DG. Dose-dependent pharmacokinetics of all-trans-retinoic acid. J Natl Cancer Inst. 1992;84(17):1332–5.

    Article  CAS  PubMed  Google Scholar 

  29. Hao K, Zhao XP, Liu XQ, Wang GJ. Determination of gambogic acid in dog plasma by high-performance liquid chromatography for a pharmacokinetic study. Biomed Chromatogr. 2007;21(3):279–83.

    Article  CAS  PubMed  Google Scholar 

  30. Hou L, Yao J, Zhou J. Simultaneous LC–MS analysis of paclitaxel and retinoic acid in plasma and tissues from tumor-bearing mice. Chromatographia. 2011;73(5–6):471–80.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Career Development Program for Yong and Middle-aged Teachers in Shenyang Pharmaceutical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Wang.

Ethics declarations

All procedures performed in studies involving animals were in accordance with the national regulations and were approved by Institutional Animal Ethical Care Committee of Shenyang Pharmaceutical University (SYPU-IACUC-C2018-4-2-203, approval date: 2 April 2018).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, K., Liu, K., Yu, J. et al. A solvent-assisted active loading technology to prepare gambogic acid and all-trans retinoic acid co-encapsulated liposomes for synergistic anticancer therapy. Drug Deliv. and Transl. Res. 10, 146–158 (2020). https://doi.org/10.1007/s13346-019-00669-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00669-4

Keywords

Navigation