Skip to main content

Advertisement

Log in

Positive effect of alendronate on bone turnover in ovariectomised rats’ osteoporosis: comparison of transdermal lipid-based delivery with conventional oral administration

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Alendronate (ALD) is clinically indicated for the treatment of osteoporosis, but its therapeutic use has been marred by severe GIT adverse effects affecting quality of life in patients. In this study, we selected novel transdermal microemulsion (TDME) as a suitable carrier for ALD as the way of avoiding intestinal toxicity and highlighted its anti-osteoporotic efficacy with extensive pharmacokinetic and pharmacodynamic analysis. TDME achieved two fold increase in bioavailability as compared to oral administration in pharmacokinetic studies. To investigate the capability of TDME in alleviating symptoms of osteoporosis, it was administered to ovariectomised rats 2 months post-surgery. The results obtained after 2 months of treatment with ALD by trans-epidermal route exhibited improved bone density in DEXA scan of rats. These observations were further supported by biochemical investigations including analysis of bone formation and resorption markers. Moreover, TDME effectively suppressed the decline in bone mass of osteoporotic rats as determined through the biometric analysis and histopathological examination of bones. Additionally, skin histopath results showed no significant skin damage at the end of treatment. Overall, these findings demonstrate that the TDME system is a promising approach for the effective delivery of ALD, bypassing the adverse effects associated with oral administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mundy GR. 2000. Pathogenesis of osteoporosis and challenges for drug delivery. Adv Drug Deliv Rev. 2000;42:165–73.

    Article  PubMed  CAS  Google Scholar 

  3. Liu HY, Wu AT, Tsai CY. The balance between adipogenesis and osteogenesis in bone regeneration by platelet-rich plasma for age-related osteoporosis. Biomaterials. 2011;32:6773–80.

    Article  PubMed  CAS  Google Scholar 

  4. Ezra A, Golomb G. Administration routes and delivery systems of bisphosphonates for the treatment of bone resorption. Adv Drug Deliv Rev. 2000;42:175–95.

    Article  PubMed  CAS  Google Scholar 

  5. Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Schenk R, Eggli P, Fleisch H, Rosini S. Quantitative morphometric evaluation of the inhibitory activity of new aminobisphosphonates on bone resorption in the rat. Calcif Tissue Int. 1986;38:342–9.

    Article  PubMed  CAS  Google Scholar 

  7. Lambrinoudaki I, Christodoulakos G, Botsis D. Bisphosphonates. Ann N Y Acad Sci. 2006;1092:397–402.

    Article  PubMed  CAS  Google Scholar 

  8. Van Beek ER, Cohen LH, Leroy IM, Ebetino FH, Löwik CW, Papapoulos SE. Differentiating the mechanisms of antiresorptive action of nitrogen containing bisphosphonates. Bone. 2003;33:805–11.

    Article  PubMed  CAS  Google Scholar 

  9. Porras AG, Holland SD, Gertz BJ. Pharmacokinetics of alendronate. Clin Pharmacokinet. 1999;36:315–28.

    Article  PubMed  CAS  Google Scholar 

  10. Graham DY. What the gastroenterologist should know about the gastrointestinal safety profiles of bisphosphonates. Dig Dis Sci. 2002;47:1665–78.

    Article  PubMed  CAS  Google Scholar 

  11. Naniwa T, Maeda T, Mizoshita T, Hayami Y, Watanabe M, Banno S, et al. Alendronate-induced esophagitis: possible pathogenic role of hypersensitivity to alendronate. Intern Med. 2008;47:2083–5.

    Article  PubMed  Google Scholar 

  12. Chaulagain B, Jain A, Tiwari A, Verma A, Jain SK. Passive delivery of protein drugs through transdermal route. Artif Cells Nanomed Biotechnol. 2018;29:1–16. https://doi.org/10.1080/21691401.2018.1430695.

    Article  CAS  Google Scholar 

  13. Choi A, Gang H, Chun I, Gwak H. The effects of fatty acids in propylene glycol on the percutaneous absorption of alendronate across the excised hairless mouse skin. Int J Pharm. 2008;357:126–31.

    Article  PubMed  CAS  Google Scholar 

  14. Yano T, Nakagawa A, Tsuji M, Noda K. Skin permeability of various nonsteroidal anti-inflammatory drugs in man. Life Sci. 1986;39:1043–50.

    Article  PubMed  CAS  Google Scholar 

  15. Russell-Jones G, Himes R. Water-in-oil microemulsions for effective transdermal delivery of proteins. Expert Opin Drug Deliv. 2011;8:537–46.

    Article  PubMed  CAS  Google Scholar 

  16. Kaur A, Sharma G, Gupta V, Ratho RK, Katare OP. Enhanced acyclovir delivery using w/o type microemulsion: preclinical assessment of antiviral activity using murine model of zosteriform cutaneous HSV-1 infection. Artif Cells Nanomed Biotechnol. 2018;46(2):346–54.

    Article  PubMed  CAS  Google Scholar 

  17. Hashem FM, Shaker DS, Ghorab MK, Nasr M, Ismail A. Formulation, characterization, and clinical evaluation of microemulsion containing clotrimazole for topical delivery. AAPS PharmSciTech. 2011;12:879–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sapra B, Thatai P, Bhandari S, Sood J, Jindal M, Tiwary AK. A critical appraisal of microemulsions for drug delivery: part II. Ther Deliv. 2014;5:83–94.

    Article  PubMed  CAS  Google Scholar 

  19. Sintov AC, Botner S. Transdermal drug delivery using microemulsion and aqueous systems: influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems. Int J Pharm. 2006;311:55–62.

    Article  PubMed  CAS  Google Scholar 

  20. Meng J, Mengb Q, Zhengc L. A simple and rapid high-performance liquid chromatography method for determination of alendronate sodium in beagle dog plasma with application to preclinical pharmacokinetic study. Biomed Chromatogr. 2010;24:169–73.

    PubMed  CAS  Google Scholar 

  21. Bessey OA, Lowry OH, Brock MJ. A method for the rapid determination of alkaline phosphates with five cubic millimetres of serum. J Biol Chem. 1946;164:321–9.

    PubMed  CAS  Google Scholar 

  22. Rico H, Iritia M, Arribas I, Revilla M. Biological profile of tartrate-resistant acid phosphatase as a marker of bone resorption. Rev Esp Fisiol. 1990;46(4):379–83.

    PubMed  CAS  Google Scholar 

  23. Bondjers G, Bjiirkerud S. Spectrophotometric determination of hydroxyproline in connective tissue on the nanogram level. Anal Biochem. 1973;52:496–504.

    Article  PubMed  CAS  Google Scholar 

  24. Morin LG. Direct Colorimetric Determination of Serum Calcium with o-Cresolphthalein Complexon. American Journal of Clinical Pathology. 1974;61(1):114–7.

    Article  PubMed  CAS  Google Scholar 

  25. Chen G-X, Zheng S, Qin S, Zhong Z-M, Wu X-H, Huang Z-P, et al. Effect of low-magnitude whole-body vibration combined with alendronate in ovariectomized rats: a random controlled osteoporosis prevention study. PLoS One. 2014;9(5):e96181,1–8. https://doi.org/10.1371/journal.pone.0096181.

    Article  CAS  Google Scholar 

  26. Cruz L, Assumpcao E, Andrade SF, Conrado DJ, Kulkamp IC, Guterres SS, et al. Gstroresistant microparticles containing sodium alendronate prevent the bone loss in ovariectomized rats. Euro J Pharm Sci. 2010;40:441–7.

    Article  CAS  Google Scholar 

  27. Fazil M, Baboota S, Jasjeet K, Sahni A, Ali J. Bisphosphonates: therapeutics potential and recent advances in drug delivery. Drug Deliv Early Online. 2014;1:1–9. https://doi.org/10.3109/10717544.2013.870259.

    Article  CAS  Google Scholar 

  28. Yanyu X, Fang L, Qineng P, Hao C. The influence of the structure and the composition of water/AOT-Tween 85/IPM microemulsion system on transdermal delivery of 5-fluorouracil. Drug Dev Ind Pharm. 2012;38:1521–9.

    Article  PubMed  CAS  Google Scholar 

  29. Teichmann A, Otberg N, Jacobi U, Sterry W, Lademann J. Follicular penetration: development of a method to block the follicles selectively against the penetration of topically applied substances. Skin Pharmacol Physiol. 2006;19:216–23.

    Article  PubMed  CAS  Google Scholar 

  30. Bronaugh RL, Stewart RF, Congdon ER. Methods for in vitro percutaneous absorption studies II—animal models for human skin. Toxicol Appl Pharmacol. 1982;62:481–8.

    Article  PubMed  CAS  Google Scholar 

  31. Consensus Development Conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 1993;94:646–50.

  32. Bitto A, Burnett BP, Polito F. Effects of genistein aglycone in osteoporotic, ovariectomized rats: a comparison with alendronate, raloxifene and oestradiol. Br J Pharmacol. 2008;155:896–905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Epstein S. Serum and urinary markers of bone remodeling: assessment of bone turnover. Endocr Rev. 1988;9:437–48.

    Article  PubMed  CAS  Google Scholar 

  34. Mohamed MT, Abuelezz SA, Atalla SS. The anti-osteoporotic and anti-atherogenic effects of alendronate and simvastatin in ovariectomized rats fed high fat diet: a comparative study of combination therapy versus monotherapy. Biomed Pharmacother. 2017;89:1115–24.

    Article  PubMed  CAS  Google Scholar 

  35. Mukaiyama K, Kamimura M, Uchiyama S, Ikegami S, Nakamura Y, Kato H. Elevation of serum alkaline phosphatase (ALP) level in postmenopausal women is caused by high bone turnover. Aging Clin Exp Res. 2015;27(4):413–8.

    Article  PubMed  Google Scholar 

  36. Igarashi K, Hirafuji M, Adachi H, Shinoda H, Mitani H. Effects of bisphosphonates on alkaline phosphatase activity, mineralization, and prostaglandin E2 synthesis in the clonal osteoblastlike cell line MC3T3-E1. Prostaglandins Leukot Essent Fatty Acids. 1997;56:121–5.

    Article  PubMed  CAS  Google Scholar 

  37. Pedrazzoni M, Alfano FS, Gatti C, Fantuzzi M, Girasole G, Campanini C, et al. Acute effects of bisphosphonates on new and traditional markers of bone resorption. Calcif Tissue Int. 1995;57:25–9.

    Article  PubMed  CAS  Google Scholar 

  38. Marshall MJ, Holt I, Davie MW. Osteoclast recruitment in mice is stimulated by (3-amino-l-hydroxypropylidene)-l, 1-bisphosphonate. Calcif Tissue Int. 1993;52:21–5.

    Article  PubMed  CAS  Google Scholar 

  39. Halleen JM, Ylipahkala H, Alatalo SL, Janckila AJ, Heikkinen JE, Suominen H, et al. Serum tartrate-resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif Tissue Int. 2002;71:20–5.

    Article  PubMed  CAS  Google Scholar 

  40. Christenson RH. Biochemical markers of bone metabolism: an overview. Clin Biochem. 1997;30:573–93.

    Article  PubMed  CAS  Google Scholar 

  41. Kuo TR, Chen CH. Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark Res. 2017;5:18.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen H, Wu M, Kubo KY. Combined treatment with a traditional Chinese medicine, Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) and alendronate improves bone microstructure in ovariectomized rats. J Ethnopharmacol. 2012;142:80–5.

    Article  PubMed  Google Scholar 

  43. Azuma Y, Chokki M, Ohta T, Kiyoki M. Effects of alendronate on plasma calcium levels, urinary calcium excretion, and bone resorption markers in normal rats: comparison with elcatonin, synthetic eel calcitonin. Endocrinology. 1996;137:2586–92.

    Article  PubMed  CAS  Google Scholar 

  44. Clark RG, Tarttelin MF. Some effects of ovariectomy and estrogen replacement on body composition in the rat. Physiol Behav. 1982;28:963–9.

    Article  PubMed  CAS  Google Scholar 

  45. Frolik CA, Bryant HU, Black EC, Magee DE, Chandrasekhar S. Time-dependent changes in biochemical bone markers and serum cholesterol in ovariectomized rats: effects of raloxifene HCl, tamoxifen, estrogen, and alendronate. Bone. 1996;18:621–7.

    Article  PubMed  CAS  Google Scholar 

  46. Seedor JG, Quartuccio HA, Thompson DD. The bisphosphonate alendronate (MK.-217) inhibits bone loss due to ovariectomy in rats. J Bone Miner Res. 1991;6(4):339–46.

    Article  PubMed  CAS  Google Scholar 

  47. Hirayama M, Iijima S, Iwashita M, Akiyama S, Takaku Y, Yamazaki M, et al. Aging effects of major and trace elements in rat bones and their mutual correlations. J Trace Elem Med Biol. 2011;25:73–84.

    Article  PubMed  CAS  Google Scholar 

  48. Sliwinski L, Janiec W, Pytlik M, Folwarczna J, Kaczmarczyk-Sedlak I, Pytlik W, et al. Effect of administration of alendronate sodium and retinol on the mechanical properties of the femur in ovariectomized rats. Pol J Pharmacol. 2004;56:817–24.

    PubMed  CAS  Google Scholar 

  49. Shahnazari M, Yao W, Dai W, Wang B, Ionova-Martin SS, Ritchie RO, et al. Higher doses of bisphosphonates further improve bone mass, architecture, and strength but not the tissue material properties in aged rats. Bone. 2010;46:1267–74.

    Article  PubMed  CAS  Google Scholar 

  50. Inoue Y, Shimojo N, Suzuki S, Arima T, Tomiita M, Minagawa M, et al. Efficacy of intravenous alendronate for the treatment of glucocorticoid-induced osteoporosis in children with autoimmune diseases. Clin Rheumatol. 2008;27:909–12.

    Article  PubMed  Google Scholar 

  51. Baron R, Ferrari S, Russell RGG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48:677–92.

    Article  PubMed  CAS  Google Scholar 

  52. Kusamori K, Katsumi H, Mari Abe UA, Sakai R, Hayashi R, et al. Development of a novel transdermal patch of alendronate, a nitrogen-containing bisphosphonate, for the treatment of osteoporosis. J Bone Miner Res. 2010;25(12):2582–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The authors sincerely acknowledge University Grants Commission-Basic Science Research (UGC-BSR) for the grant provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Pokharkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boche, M., Pokharkar, V. Positive effect of alendronate on bone turnover in ovariectomised rats’ osteoporosis: comparison of transdermal lipid-based delivery with conventional oral administration. Drug Deliv. and Transl. Res. 8, 1078–1089 (2018). https://doi.org/10.1007/s13346-018-0558-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0558-9

Keywords

Navigation