Skip to main content
Log in

Secretory granule exocytosis and its amplification by cAMP in pancreatic β-cells

  • Mini-Review
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

The sequence of events for secreting insulin in response to glucose in pancreatic β-cells is termed “stimulus-secretion coupling”. The core of stimulus-secretion coupling is a process which generates electrical activity in response to glucose uptake and causes Ca2+ oscillation for triggering exocytosis of insulin-containing secretory granules. Prior to exocytosis, the secretory granules are mobilized and docked to the plasma membrane and primed for fusion with the plasma membrane. Together with the final fusion with the plasma membrane, these steps are named the exocytosis process of insulin secretion. The steps involved in the exocytosis process are crucial for insulin release from β-cells and considered indispensable for glucose homeostasis. We recently confirmed a signature of defective exocytosis process in human islets and β-cells of obese donors with type 2 diabetes (T2D). Furthermore, cyclic AMP (cAMP) potentiates glucose-stimulated insulin secretion through mechanisms including accelerating the exocytosis process. In this mini-review, we aimed to organize essential knowledge of the secretory granule exocytosis and its amplification by cAMP. Then, we suggest the fatty acid translocase CD36 as a predisposition in β-cells for causing defective exocytosis, which is considered a pathogenesis of T2D in relation to obesity. Finally, we propose potential therapeutics of the defective exocytosis based on a CD36-neutralizing antibody and on Apolipoprotein A-I (ApoA-I), for improving β-cell function in T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahlqvist E, Storm P, Karajamaki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–9. https://doi.org/10.1016/S2213-8587(18)30051-2.

    Article  PubMed  Google Scholar 

  2. Wagner R, Heni M, Tabak AG, Machann J, Schick F, Randrianarisoa E, et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med. 2021;27(1):49–57. https://doi.org/10.1038/s41591-020-1116-9.

    Article  CAS  PubMed  Google Scholar 

  3. International Diabetes Federation. IDF Diabetes Atlas 2021. 10 ed. 2021.

  4. Lawlor N, Khetan S, Ucar D, Stitzel ML. Genomics of Islet (Dys)function and Type 2 Diabetes. Trends Genet. 2017;33(4):244–55. https://doi.org/10.1016/j.tig.2017.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosengren AH, Braun M, Mahdi T, Andersson SA, Travers ME, Shigeto M, et al. Reduced insulin exocytosis in human pancreatic beta-cells with gene variants linked to type 2 diabetes. Diabetes. 2012;61(7):1726–33. https://doi.org/10.2337/db11-1516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gandasi NR, Yin P, Omar-Hmeadi M, Ottosson Laakso E, Vikman P, Barg S. Glucose-dependent granule docking limits insulin secretion and is decreased in human type 2 diabetes. Cell Metab. 2018;27(2):470–8. https://doi.org/10.1016/j.cmet.2017.12.017.

    Article  CAS  PubMed  Google Scholar 

  7. Nagao M, Esguerra JLS, Asai A, Ofori JK, Edlund A, Wendt A, et al. Potential protection against type 2 diabetes in obesity through lower CD36 expression and improved exocytosis in beta-cells. Diabetes. 2020;69(6):1193–205. https://doi.org/10.2337/db19-0944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andersson SA, Olsson AH, Esguerra JL, Heimann E, Ladenvall C, Edlund A, et al. Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Mol Cell Endocrinol. 2012;364(1–2):36–45. https://doi.org/10.1016/j.mce.2012.08.009.

    Article  CAS  PubMed  Google Scholar 

  9. Seino S, Bell GI. Pancreatic Beta Cell in Health and Disease. Kaneohe: Springer; 2010.

    Google Scholar 

  10. Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem. 2005;53(9):1087–97. https://doi.org/10.1369/jhc.5C6684.2005.

    Article  CAS  PubMed  Google Scholar 

  11. Steiner DJ, Kim A, Miller K, Hara M. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets. 2010;2(3):135–45. https://doi.org/10.4161/isl.2.3.11815.

    Article  PubMed  Google Scholar 

  12. Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25–53.

    Article  Google Scholar 

  13. Orci L, Gabbay KH, Malaisse WJ. Pancreatic beta-cell web: its possible role in insulin secretion. Science. 1972;175(4026):1128–30. https://doi.org/10.1126/science.175.4026.1128.

    Article  CAS  PubMed  Google Scholar 

  14. Ivarsson R, Obermuller S, Rutter GA, Galvanovskis J, Renstrom E. Temperature-sensitive random insulin granule diffusion is a prerequisite for recruiting granules for release. Traffic. 2004;5(10):750–62. https://doi.org/10.1111/j.1600-0854.2004.00216.x.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu X, Orci L, Carroll R, Norrbom C, Ravazzola M, Steiner DF. Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc Natl Acad Sci U S A. 2002;99(16):10299–304. https://doi.org/10.1073/pnas.162352799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davidson HW, Rhodes CJ, Hutton JC. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature. 1988;333(6168):93–6. https://doi.org/10.1038/333093a0.

    Article  CAS  PubMed  Google Scholar 

  17. Barg S, Huang P, Eliasson L, Nelson DJ, Obermuller S, Rorsman P, et al. Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification. J Cell Sci. 2001;114(Pt 11):2145–54.

    Article  CAS  Google Scholar 

  18. Schnell AH, Swenne I, Borg LA. Lysosomes and pancreatic islet function A quantitative estimation of crinophagy in the mouse pancreatic B-cell. Cell Tissue Res. 1988;252(1):9–15. https://doi.org/10.1007/BF00213820.

    Article  CAS  PubMed  Google Scholar 

  19. Dean PM. Ultrastructural morphometry of the pancreatic -cell. Diabetologia. 1973;9(2):115–9. https://doi.org/10.1007/BF01230690.

    Article  CAS  PubMed  Google Scholar 

  20. Olofsson CS, Gopel SO, Barg S, Galvanovskis J, Ma X, Salehi A, et al. Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Arch. 2002;444(1–2):43–51. https://doi.org/10.1007/s00424-002-0781-5.

    Article  CAS  PubMed  Google Scholar 

  21. Rorsman P, Renstrom E. Insulin granule dynamics in pancreatic beta cells. Diabetologia. 2003;46(8):1029–45. https://doi.org/10.1007/s00125-003-1153-1.

    Article  CAS  PubMed  Google Scholar 

  22. Eliasson L, Abdulkader F, Braun M, Galvanovskis J, Hoppa MB, Rorsman P. Novel aspects of the molecular mechanisms controlling insulin secretion. J Physiol. 2008;586(14):3313–24. https://doi.org/10.1113/jphysiol.2008.155317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hutton JC, Penn EJ, Peshavaria M. Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J. 1983;210(2):297–305. https://doi.org/10.1042/bj2100297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rorsman P, Ashcroft FM. Pancreatic beta-cell electrical activity and insulin secretion: of mice and men. Physiol Rev. 2018;98(1):117–214. https://doi.org/10.1152/physrev.00008.2017.

    Article  CAS  PubMed  Google Scholar 

  25. Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, et al. Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes. 2008;57(6):1618–28. https://doi.org/10.2337/db07-0991.

    Article  CAS  PubMed  Google Scholar 

  26. Braun M, Ramracheya R, Johnson PR, Rorsman P. Exocytotic properties of human pancreatic beta-cells. Ann N Y Acad Sci. 2009;1152:187–93. https://doi.org/10.1111/j.1749-6632.2008.03992.x.

    Article  CAS  PubMed  Google Scholar 

  27. Eliasson L, Renstrom E, Ding WG, Proks P, Rorsman P. Rapid ATP-dependent priming of secretory granules precedes Ca(2+)-induced exocytosis in mouse pancreatic B-cells. J Physiol. 1997;503(Pt 2):399–412. https://doi.org/10.1111/j.1469-7793.1997.399bh.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Renstrom E, Eliasson L, Bokvist K, Rorsman P. Cooling inhibits exocytosis in single mouse pancreatic B-cells by suppression of granule mobilization. J Physiol. 1996;494(Pt 1):41–52. https://doi.org/10.1113/jphysiol.1996.sp021474.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Renstrom E, Eliasson L, Rorsman P. Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol. 1997;502(Pt 1):105–18. https://doi.org/10.1111/j.1469-7793.1997.105bl.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Straub SG, Sharp GW. Hypothesis: one rate-limiting step controls the magnitude of both phases of glucose-stimulated insulin secretion. Am J Physiol Cell Physiol. 2004;287(3):C565–71. https://doi.org/10.1152/ajpcell.00079.2004.

    Article  CAS  PubMed  Google Scholar 

  31. Straub SG, Shanmugam G, Sharp GW. Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets. Diabetes. 2004;53(12):3179–83. https://doi.org/10.2337/diabetes.53.12.3179.

    Article  CAS  PubMed  Google Scholar 

  32. Barg S, Ma X, Eliasson L, Galvanovskis J, Gopel SO, Obermuller S, et al. Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells. Biophys J. 2001;81(6):3308–23. https://doi.org/10.1016/S0006-3495(01)75964-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gandasi NR, Yin P, Riz M, Chibalina MV, Cortese G, Lund PE, et al. Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes. J Clin Invest. 2017;127(6):2353–64. https://doi.org/10.1172/JCI88491.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoppa MB, Collins S, Ramracheya R, Hodson L, Amisten S, Zhang Q, et al. Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2+) channels from secretory granules. Cell Metab. 2009;10(6):455–65. https://doi.org/10.1016/j.cmet.2009.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Del Prato S. Loss of early insulin secretion leads to postprandial hyperglycaemia. Diabetologia. 2003;46(Suppl 1):M2-8. https://doi.org/10.1007/s00125-002-0930-6.

    Article  CAS  PubMed  Google Scholar 

  36. Lang J. Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem. 1999;259(1–2):3–17. https://doi.org/10.1046/j.1432-1327.1999.00043.x.

    Article  CAS  PubMed  Google Scholar 

  37. Toonen RF, Verhage M. Munc18-1 in secretion: lonely Munc joins SNARE team and takes control. Trends Neurosci. 2007;30(11):564–72. https://doi.org/10.1016/j.tins.2007.08.008.

    Article  CAS  PubMed  Google Scholar 

  38. Tomas A, Meda P, Regazzi R, Pessin JE, Halban PA. Munc 18–1 and granuphilin collaborate during insulin granule exocytosis. Traffic. 2008;9(5):813–32. https://doi.org/10.1111/j.1600-0854.2008.00709.x.

    Article  CAS  PubMed  Google Scholar 

  39. Yin P, Gandasi NR, Arora S, Omar-Hmeadi M, Saras J, Barg S. Syntaxin clusters at secretory granules in a munc18-bound conformation. Mol Biol Cell. 2018;29(22):2700–8. https://doi.org/10.1091/mbc.E17-09-0541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iezzi M, Kouri G, Fukuda M, Wollheim CB. Synaptotagmin V and IX isoforms control Ca2+ -dependent insulin exocytosis. J Cell Sci. 2004;117(Pt 15):3119–27. https://doi.org/10.1242/jcs.01179.

    Article  CAS  PubMed  Google Scholar 

  41. Gustavsson N, Lao Y, Maximov A, Chuang JC, Kostromina E, Repa JJ, et al. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. Proc Natl Acad Sci U S A. 2008;105(10):3992–7. https://doi.org/10.1073/pnas.0711700105.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kasai K, Ohara-Imaizumi M, Takahashi N, Mizutani S, Zhao S, Kikuta T, et al. Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation. J Clin Invest. 2005;115(2):388–96. https://doi.org/10.1172/JCI22955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yaekura K, Julyan R, Wicksteed BL, Hays LB, Alarcon C, Sommers S, et al. Insulin secretory deficiency and glucose intolerance in Rab3A null mice. J Biol Chem. 2003;278(11):9715–21. https://doi.org/10.1074/jbc.M211352200.

    Article  CAS  PubMed  Google Scholar 

  44. Tengholm A, Gylfe E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes Metab. 2017;19(Suppl 1):42–53. https://doi.org/10.1111/dom.12993.

    Article  CAS  PubMed  Google Scholar 

  45. Ahren B. Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia. 2000;43(4):393–410. https://doi.org/10.1007/s001250051322.

    Article  CAS  PubMed  Google Scholar 

  46. Rorsman P, Braun M. Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol. 2013;75:155–79. https://doi.org/10.1146/annurev-physiol-030212-183754.

    Article  CAS  PubMed  Google Scholar 

  47. Gromada J, Bokvist K, Ding WG, Holst JJ, Nielsen JH, Rorsman P. Glucagon-like peptide 1 (7–36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes. 1998;47(1):57–65. https://doi.org/10.2337/diab.47.1.57.

    Article  CAS  PubMed  Google Scholar 

  48. Ammala C, Ashcroft FM, Rorsman P. Calcium-independent potentiation of insulin release by cyclic AMP in single beta-cells. Nature. 1993;363(6427):356–8. https://doi.org/10.1038/363356a0.

    Article  CAS  PubMed  Google Scholar 

  49. Wan QF, Dong Y, Yang H, Lou X, Ding J, Xu T. Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. J Gen Physiol. 2004;124(6):653–62. https://doi.org/10.1085/jgp.200409082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eliasson L, Ma X, Renstrom E, Barg S, Berggren PO, Galvanovskis J, et al. SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol. 2003;121(3):181–97. https://doi.org/10.1085/jgp.20028707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shibasaki T, Sunaga Y, Seino S. Integration of ATP, cAMP, and Ca2+ signals in insulin granule exocytosis. Diabetes. 2004;53(Suppl 3):S59-62. https://doi.org/10.2337/diabetes.53.suppl_3.s59.

    Article  CAS  PubMed  Google Scholar 

  52. Seino S, Takahashi H, Takahashi T, Shibasaki T. Treating diabetes today: a matter of selectivity of sulphonylureas. Diabetes Obes Metab. 2012;14(Suppl 1):9–13. https://doi.org/10.1111/j.1463-1326.2011.01507.x.

    Article  CAS  PubMed  Google Scholar 

  53. Edlund A, Esguerra JL, Wendt A, Flodstrom-Tullberg M, Eliasson L. CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic beta-cells. BMC Med. 2014;12:87. https://doi.org/10.1186/1741-7015-12-87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vikman J, Svensson H, Huang YC, Kang Y, Andersson SA, Gaisano HY, et al. Truncation of SNAP-25 reduces the stimulatory action of cAMP on rapid exocytosis in insulin-secreting cells. Am J Physiol Endocrinol Metab. 2009;297(2):E452–61. https://doi.org/10.1152/ajpendo.90585.2008.

    Article  CAS  PubMed  Google Scholar 

  55. Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T, et al. Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFIIRim2. Piccolo complex in cAMP-dependent exocytosis. J Biol Chem. 2002;277(52):50497–502. https://doi.org/10.1074/jbc.M210146200.

    Article  CAS  PubMed  Google Scholar 

  56. Carey VJ, Walters EE, Colditz GA, Solomon CG, Willett WC, Rosner BA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women The Nurses’ Health Study. Am J Epidemiol. 1997;145(7):614–9. https://doi.org/10.1093/oxfordjournals.aje.a009158.

    Article  CAS  PubMed  Google Scholar 

  57. Olofsson CS, Salehi A, Holm C, Rorsman P. Palmitate increases L-type Ca2+ currents and the size of the readily releasable granule pool in mouse pancreatic beta-cells. J Physiol. 2004;557(Pt 3):935–48. https://doi.org/10.1113/jphysiol.2004.066258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nagao M, Asai A, Inaba W, Kawahara M, Shuto Y, Kobayashi S, et al. Characterization of pancreatic islets in two selectively bred mouse lines with different susceptibilities to high-fat diet-induced glucose intolerance. PLoS ONE. 2014;9(1): e84725. https://doi.org/10.1371/journal.pone.0084725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nagao M, Esguerra JLS, Wendt A, Asai A, Sugihara H, Oikawa S, et al. Selectively Bred Diabetes Models: GK Rats, NSY Mice, and ON Mice. Methods Mol Biol. 2020;2128:25–54. https://doi.org/10.1007/978-1-0716-0385-7_3.

    Article  CAS  PubMed  Google Scholar 

  60. Daniel S, Noda M, Straub SG, Sharp GW. Identification of the docked granule pool responsible for the first phase of glucose-stimulated insulin secretion. Diabetes. 1999;48(9):1686–90. https://doi.org/10.2337/diabetes.48.9.1686.

    Article  CAS  PubMed  Google Scholar 

  61. Marsh BJ, Soden C, Alarcon C, Wicksteed BL, Yaekura K, Costin AJ, et al. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine beta-cells. Mol Endocrinol. 2007;21(9):2255–69. https://doi.org/10.1210/me.2007-0077.

    Article  CAS  PubMed  Google Scholar 

  62. Nilsson O, Del Giudice R, Nagao M, Gronberg C, Eliasson L, Lagerstedt JO. Apolipoprotein A-I primes beta cells to increase glucose stimulated insulin secretion. Biochim Biophys Acta Mol Basis Dis. 2020;1866(3): 165613. https://doi.org/10.1016/j.bbadis.2019.165613.

    Article  CAS  PubMed  Google Scholar 

  63. Saito H, Dhanasekaran P, Nguyen D, Deridder E, Holvoet P, Lund-Katz S, et al. Alpha-helix formation is required for high affinity binding of human apolipoprotein A-I to lipids. J Biol Chem. 2004;279(20):20974–81. https://doi.org/10.1074/jbc.M402043200.

    Article  CAS  PubMed  Google Scholar 

  64. Edmunds SJ, Liebana-Garcia R, Nilsson O, Domingo-Espin J, Gronberg C, Stenkula KG, et al. ApoAI-derived peptide increases glucose tolerance and prevents formation of atherosclerosis in mice. Diabetologia. 2019;62(7):1257–67. https://doi.org/10.1007/s00125-019-4877-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Edmunds SJ, Liebana-Garcia R, Stenkula KG, Lagerstedt JO. A short peptide of the C-terminal class Y helices of apolipoprotein A-I has preserved functions in cholesterol efflux and in vivo metabolic control. Sci Rep. 2020;10(1):18070. https://doi.org/10.1038/s41598-020-75232-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eliasson L, Esguerra JLS, Wendt A. Lessons from basic pancreatic beta cell research in type-2 diabetes and vascular complications. Diabetol Int. 2017;8(2):139–52. https://doi.org/10.1007/s13340-017-0304-4.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Asplund O, Storm P, Chandra V, Ottosson-Laakso E, Hatem G, Mansour-Aly D, et al. Islet Gene View - a tool to facilitate islet research. BioRxiv. 2020. https://doi.org/10.1101/435743.

    Article  Google Scholar 

  68. Alonso L, Piron A, Moran I, Guindo-Martinez M, Bonas-Guarch S, Atla G, et al. TIGER: The gene expression regulatory variation landscape of human pancreatic islets. Cell Rep. 2021;37(2): 109807. https://doi.org/10.1016/j.celrep.2021.109807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our present and former colleagues at Lund University Diabetes Centre (LUDC) and Nippon Medical School for contributions to the research introduced in this review and Yoshimi Nagao for supporting figure illustration. We acknowledge the human tissue laboratory at LUDC/Exodiab and the Nordic Centre for Islet Transplantation for the delivery of islets from human donors. We are grateful for support to our research in this area from the JSPS KAKENHI Grant Numbers 17KK0184, 19K23872 and 21K05453, the European Foundation for the Study of Diabetes and the Japan Diabetes Society, the Diabetes Wellness Sverige, the Uehara Memorial Foundation, the Scandinavia-Japan Sasakawa Foundation, the Sumitomo Life Welfare Foundation, the Ono Medical Research Foundation, the Swedish Research Council (LE project grant, JOL project grant, and an SRA grant SFO-EXODIAB (2009-1039)), ALF-Region Scania, Sweden, The Swedish Diabetes Foundation and the Swedish Foundation for Strategic Research (IRC-LUDC; IRC15-0067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mototsugu Nagao or Lena Eliasson.

Ethics declarations

Conflict of interest

JOL is an employee of Novo Nordisk A/S, DK. The authors have no conflict of interest.

Ethical statement

The work using human islets was approved by the ethics committee in Malmö/Lund, Sweden: project No. 2011/263, date of approval 2011–05-03. All the procedures on the human islets were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and/or with the Helsinki Declaration of 1964 and later versions. Donors or their relatives had given their written consent to donate organs for biomedical research upon admission to the intensive care unit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagao, M., Lagerstedt, J.O. & Eliasson, L. Secretory granule exocytosis and its amplification by cAMP in pancreatic β-cells. Diabetol Int 13, 471–479 (2022). https://doi.org/10.1007/s13340-022-00580-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-022-00580-3

Keywords

Navigation