Skip to main content

Advertisement

Log in

The forgotten type 2 diabetes mellitus medicine: rosiglitazone

  • Review Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is a chronic disease prevalent in the world, and it is also one of the overall factors leading to overall morbidity and mortality. Throughout Asia, the proportion of people with T2DM and obesity has increased and this growth rate shows no signs of slowing down. Thiazolidinediones (TZDs) can specifically treat insulin resistance and improve metabolic syndrome, including rosiglitazone, troglitazone and pioglitazone, which are peroxisome proliferator-activated receptor (PPAR) agonists. These drugs have been shown to have better therapeutic effect and glycemic control, but also accompanied by a series of adverse reactions. Cardiovascular events are currently the most serious adverse events of rosiglitazone, which cardiovascular toxicity is higher than pioglitazone. Rosiglitazone has been restricted or even withdrawal from the market in most countries owing to concerns about its cardiovascular safety, while its beneficial effect on insulin resistance has been demonstrated. New data on rosiglitazone-mediated heart failure, myocardial infarction and fractures provide clinicians with prescriptions with fewer side effects to treat patients. Studies have shown that rosiglitazone is the most effective treatment in TZDs (in vivo study), not only hypoglycemic effect but with some additional effects, such as anti-inflammatory and anti-cancer capabilities, retinopathy (animal models) and ischemia–reperfusion injury protection effects, lipid regulation and blood pressure reduction, etc. Although rosiglitazone shows the highest risk of arrhythmia in diabetes management while has the capacity to reduce the risk of atrial fibrillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. FDA requires removal of some prescribing and dispensing restrictions for rosiglitazone-containing diabetes medicines. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-requires-removal-some-prescribing-and-dispensing-restrictions. Accessed 22 Mar 2021

  2. Yoon KH, Lee JH, Kim JW, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006;368(9548):1681–8.

    PubMed  Google Scholar 

  3. Juurlink DN. Rosiglitazone and the case for safety over certainty. JAMA. 2010;304(4):469–71.

    CAS  PubMed  Google Scholar 

  4. Durbin RJ. Thiazolidinedione therapy in the prevention/delay of type 2 diabetes in patients with impaired glucose tolerance and insulin resistance. Diabetes Obes Metab. 2004;6(4):280–5.

    CAS  PubMed  Google Scholar 

  5. Rosen CJ. Revisiting the rosiglitazone story–lessons learned. N Engl J Med. 2010;363(9):803–6.

    CAS  PubMed  Google Scholar 

  6. Mitka M. Panel recommends easing restrictions on rosiglitazone despite concerns about cardiovascular safety. JAMA. 2013;310(3):246–7.

    CAS  PubMed  Google Scholar 

  7. Hickson RP, Cole AL, Dusetzina SB. Implications of removing rosiglitazone’s black box warning and restricted access program on the uptake of thiazolidinediones and dipeptidyl peptidase-4 inhibitors among patients with type 2 diabetes. J Manag Care Spec Pharm. 2019;25(1):72–9.

    PubMed  PubMed Central  Google Scholar 

  8. Berthet S, Olivier P, Montastruc JL, Lapeyre-Mestre M. Drug safety of rosiglitazone and pioglitazone in France: a study using the French PharmacoVigilance database. BMC Clin Pharmacol. 2011;11:5.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wooltorton E. Rosiglitazone (Avandia) and pioglitazone (Actos) and heart failure. CMAJ. 2002;166(2):219.

    PubMed  PubMed Central  Google Scholar 

  10. Smiley D, Umpierrez G. Metformin/rosiglitazone combination pill (Avandamet) for the treatment of patients with Type 2 diabetes. Expert Opin Pharmacother. 2007;8(9):1353–64.

    CAS  PubMed  Google Scholar 

  11. Bansal G, Thanikachalam PV, Maurya RK, Chawla P, Ramamurthy S. An overview on medicinal perspective of thiazolidine-2,4-dione: a remarkable scaffold in the treatment of type 2 diabetes. J Adv Res. 2020;23:163–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Derosa G, Maffioli P. Thiazolidinediones plus metformin association on body weight in patients with type 2 diabetes. Diabetes Res Clin Pract. 2011;91(3):265–70.

    CAS  PubMed  Google Scholar 

  13. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008;77:289–312.

    CAS  PubMed  Google Scholar 

  14. Bailey CJ. Treating insulin resistance in type 2 diabetes with metformin and thiazolidinediones. Diabetes Obes Metab. 2005;7(6):675–91.

    CAS  PubMed  Google Scholar 

  15. Li J, Shen X. Effect of rosiglitazone on inflammatory cytokines and oxidative stress after intensive insulin therapy in patients with newly diagnosed type 2 diabetes. Diabetol Metab Syndr. 2019;3(11):35.

    Google Scholar 

  16. Home PD, Jones NP, Pocock SJ, et al. Rosiglitazone RECORD study: glucose control outcomes at 18 months. Diabet Med. 2007;24(6):626–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.

    CAS  PubMed  Google Scholar 

  18. Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA. 2007;298(10):1189–95.

    CAS  PubMed  Google Scholar 

  19. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35.

    CAS  PubMed  Google Scholar 

  20. Fitzpatrick LA, Bilezikian JP, Wooddell M, et al. Mechanism of action study to evaluate the effect of rosiglitazone on bone in postmenopausal women with type 2 diabetes mellitus: rationale, study design and baseline characteristics. J Drug Assess. 2011;1(1):11–9.

    PubMed  PubMed Central  Google Scholar 

  21. Mancini T, Mazziotti G, Doga M, et al. Vertebral fractures in males with type 2 diabetes treated with rosiglitazone. Bone. 2009;45(4):784–8.

    CAS  PubMed  Google Scholar 

  22. Bilezikian JP, Josse RG, Eastell R, et al. Rosiglitazone decreases bone mineral density and increases bone turnover in postmenopausal women with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2013;98(4):1519–28.

    CAS  PubMed  Google Scholar 

  23. Patel JJ, Butters OR, Arnett TR. PPAR agonists stimulate adipogenesis at the expense of osteoblast differentiation while inhibiting osteoclast formation and activity. Cell Biochem Funct. 2014;32(4):368–77.

    CAS  PubMed  Google Scholar 

  24. Kahn SE, Zinman B, Lachin JM, et al. Rosiglitazone-associated fractures in type 2 diabetes: an analysis from a Diabetes Outcome Progression Trial (ADOPT). Diabetes Care. 2008;31(5):845–51.

    CAS  PubMed  Google Scholar 

  25. Bundhun PK, Janoo G, Teeluck AR, Huang F. Adverse drug effects observed with vildagliptin versus pioglitazone or rosiglitazone in the treatment of patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. BMC Pharmacol Toxicol. 2017;18(1):66.

    PubMed  PubMed Central  Google Scholar 

  26. Bohannon NJ. Treating dual defects in diabetes: insulin resistance and insulin secretion. Am J Health Syst Pharm. 2002;1(59 Suppl 9):S9-13.

    Google Scholar 

  27. DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Gerstein HC, Yusuf S, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial [published correction appears in Lancet. 2006. 368(9549):1770]. Lancet. 2006. 368(9541):1096–1105

  28. Tostes GC, Cunha MR, Fukui RT, et al. Effects of nateglinide and rosiglitazone on pancreatic alpha- and beta-cells, GLP-1 secretion and inflammatory markers in patients with type 2 diabetes: randomized crossover clinical study. Diabetol Metab Syndr. 2016;8:1.

    PubMed  PubMed Central  Google Scholar 

  29. Rizos CV, Kei A, Elisaf MS. The current role of thiazolidinediones in diabetes management. Arch Toxicol. 2016;90(8):1861–81.

    CAS  PubMed  Google Scholar 

  30. Loebstein R, Dushinat M, Vesterman-Landes J, et al. Database evaluation of the effects of long-term rosiglitazone treatment on cardiovascular outcomes in patients with type 2 diabetes. J Clin Pharmacol. 2011;51(2):173–80.

    CAS  PubMed  Google Scholar 

  31. Szeto CC, Li PK. Antiproteinuric and anti-inflammatory effects of thiazolidinedione. Nephrology (Carlton). 2008;13(1):53–7.

    CAS  Google Scholar 

  32. Trial Investigators DREAM, Dagenais GR, Gerstein HC, et al. Effects of ramipril and rosiglitazone on cardiovascular and renal outcomes in people with impaired glucose tolerance or impaired fasting glucose: results of the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) trial. Diabetes Care. 2008;31(5):1007–14.

    Google Scholar 

  33. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107.

    CAS  PubMed  Google Scholar 

  34. Villapol S. Roles of n. Cell Mol Neurobiol. 2018;38(1):121–32.

    CAS  PubMed  Google Scholar 

  35. Bastien M, Poirier P, Brassard P, et al. Effect of PPARγ agonist on aerobic exercise capacity in relation to body fat distribution in men with type 2 diabetes mellitus and coronary artery disease: a 1-yr randomized study. Am J Physiol Endocrinol Metab. 2019;317(1):E65–73.

    CAS  PubMed  Google Scholar 

  36. Yoon KH, Shin JA, Kwon HS, et al. Comparison of the efficacy of glimepiride, metformin, and rosiglitazone monotherapy in korean drug-naïve type 2 diabetic patients: the practical evidence of antidiabetic monotherapy study. Diabetes Metab J. 2011;35(1):26–33.

    PubMed  PubMed Central  Google Scholar 

  37. Rosak C, Petzoldt R, Wolf R, Reblin T, Dehmel B, Seidel D. Rosiglitazone plus metformin is effective and well tolerated in clinical practice: results from large observational studies in people with type 2 diabetes. Int J Clin Pract. 2005;59(10):1131–6.

    CAS  PubMed  Google Scholar 

  38. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy [published correction appears in N Engl J Med. 2007;356(13):1387–8]. N Engl J Med. 2006;355(23):2427–2443.

  39. Nie JM, Li HF. Metformin in combination with rosiglitazone contribute to the increased serum adiponectin levels in people with type 2 diabetes mellitus. Exp Ther Med. 2017;14(3):2521–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333–46.

    CAS  PubMed  Google Scholar 

  41. Piché ME, Laberge AS, Brassard P, et al. Rosiglitazone lowers resting and blood pressure response to exercise in men with type 2 diabetes: a 1-year randomized study. Diabetes Obes Metab. 2018;20(7):1740–50.

    PubMed  Google Scholar 

  42. Lu Y, Ma D, Xu W, Shao S, Yu X. Effect and cardiovascular safety of adding rosiglitazone to insulin therapy in type 2 diabetes: a meta-analysis. J Diabetes Investig. 2015;6(1):78–86.

    CAS  PubMed  Google Scholar 

  43. Grenier A, Brassard P, Bertrand OF, et al. Rosiglitazone influences adipose tissue distribution without deleterious impact on heart rate variability in coronary heart disease patients with type 2 diabetes. Clin Auton Res. 2016;26(6):407–14.

    PubMed  Google Scholar 

  44. Atamer Y, Atamer A, Can AS, et al. Effects of rosiglitazone on serum paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus. Braz J Med Biol Res. 2013;46(6):528–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu X. Candidate genes associated with the effect of rosiglitazone on glycemic control and cardiovascular system in the treatment of type 2 diabetes mellitus. Exp Ther Med. 2019;17(3):2039–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pala S, Esen O, Akçakoyun M, et al. Rosiglitazone, but not pioglitazone, improves myocardial systolic function in type 2 diabetic patients: a tissue Doppler study. Echocardiography. 2010;27(5):512–8.

    PubMed  Google Scholar 

  47. Stage TB, Christensen MH, Jørgensen NR, et al. Effects of metformin, rosiglitazone and insulin on bone metabolism in patients with type 2 diabetes. Bone. 2018;112:35–41.

    CAS  PubMed  Google Scholar 

  48. Schwartz AV, Chen H, Ambrosius WT, et al. Effects of TZD use and discontinuation on fracture rates in ACCORD bone study. J Clin Endocrinol Metab. 2015;100(11):4059–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Eckel RH, Farooki A, Henry RR, Koch GG, Leiter LA. Cardiovascular outcome trials in type 2 diabetes: what do they mean for clinical practice? Clin Diabetes. 2019;37(4):316–37.

    PubMed  PubMed Central  Google Scholar 

  50. Lonn EM, Gerstein HC, Sheridan P, et al. Effect of ramipril and of rosiglitazone on carotid intima-media thickness in people with impaired glucose tolerance or impaired fasting glucose: STARR (STudy of Atherosclerosis with Ramipril and Rosiglitazone). J Am Coll Cardiol. 2009;53(22):2028–35.

    CAS  PubMed  Google Scholar 

  51. Florez H, Reaven PD, Bahn G, et al. Rosiglitazone treatment and cardiovascular disease in the Veterans Affairs Diabetes Trial. Diabetes Obes Metab. 2015;17(10):949–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stone JC, Furuya-Kanamori L, Barendregt JJ, Doi SA. Was there really any evidence that rosiglitazone increased the risk of myocardial infarction or death from cardiovascular causes? Pharmacoepidemiol Drug Saf. 2015;24(3):223–7.

    CAS  PubMed  Google Scholar 

  53. Kaul S, Bolger AF, Herrington D, et al. Thiazolidinedione drugs and cardiovascular risks: a science advisory from the American Heart Association and American College Of Cardiology Foundation. J Am Coll Cardiol. 2010;55(17):1885–94.

    PubMed  Google Scholar 

  54. Lebovitz HE. Thiazolidinediones: the forgotten diabetes medications. Curr Diab Rep. 2019;19(12):151.

    PubMed  PubMed Central  Google Scholar 

  55. Mendes D, Alves C, Batel-Marques F. Number needed to harm in the post-marketing safety evaluation: results for rosiglitazone and pioglitazone. Pharmacoepidemiol Drug Saf. 2015;24(12):1259–70.

    CAS  PubMed  Google Scholar 

  56. McAfee AT, Koro C, Landon J, Ziyadeh N, Walker AM. Coronary heart disease outcomes in patients receiving antidiabetic agents. Pharmacoepidemiol Drug Saf. 2007;16(7):711–25.

    PubMed  Google Scholar 

  57. Walker AM, Koro CE, Landon J. Coronary heart disease outcomes in patients receiving antidiabetic agents in the PharMetrics database 2000–2007. Pharmacoepidemiol Drug Saf. 2008;17(8):760–8.

    PubMed  Google Scholar 

  58. Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, et al. Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA. 2010;304(4):411–8.

    CAS  PubMed  Google Scholar 

  59. Bach RG, Brooks MM, Lombardero M, et al. Rosiglitazone and outcomes for patients with diabetes mellitus and coronary artery disease in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. Circulation. 2013;128(8):785–94.

    CAS  PubMed  Google Scholar 

  60. Cheng D, Gao H, Li W. Long-term risk of rosiglitazone on cardiovascular events—a systematic review and meta-analysis. Endokrynol Pol. 2018;69(4):381–94.

    CAS  PubMed  Google Scholar 

  61. Han E, Jang SY, Kim G, et al. Rosiglitazone use and the risk of bladder cancer in patients with Type 2 diabetes. Medicine (Baltimore). 2016;95(6):e2786.

    CAS  Google Scholar 

  62. Han E, et al. Rosiglitazone Use and the Risk of Bladder Cancer in Patients With Type 2 Diabetes. Medicine 2016;95(6):e2786. https://doi.org/10.1097/MD.0000000000002786

  63. Hsiao FY, Hsieh PH, Huang WF, Tsai YW, Gau CS. Risk of bladder cancer in diabetic patients treated with rosiglitazone or pioglitazone: a nested case–control study. Drug Saf. 2013;36(8):643–9.

    CAS  PubMed  Google Scholar 

  64. Raef H, Al-Mahfouz A, Al-Khonaizan A. Adding rosiglitazone to metformin in patients with type 2 diabetes: effect on diabetes control and metabolic parameters. Int J Diabetes Mellitus. 2009;1(1):2–6.

    Google Scholar 

  65. Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2004;27(1):256–63.

    CAS  PubMed  Google Scholar 

  66. Kendall C, Wooltorton E. Rosiglitazone (Avandia) and macular edema. CMAJ. 2006;174(5):623.

    PubMed  PubMed Central  Google Scholar 

  67. Idris I, Warren G, Donnelly R. Association between thiazolidinedione treatment and risk of macular edema among patients with type 2 diabetes. Arch Intern Med. 2012;172(13):1005–11.

    CAS  PubMed  Google Scholar 

  68. Fong DS, Contreras R. Glitazone use associated with diabetic macular edema. Am J Ophthalmol. 2009;147(4):583-586.e1.

    CAS  PubMed  Google Scholar 

  69. Bertrand OF, Poirier P, Rodés-Cabau J, et al. Cardiometabolic effects of rosiglitazone in patients with type 2 diabetes and coronary artery bypass grafts: a randomized placebo-controlled clinical trial. Atherosclerosis. 2010;211(2):565–73.

    CAS  PubMed  Google Scholar 

  70. Bertrand OF, Poirier P, Rodés-Cabau J, et al. A multicentre, randomized, double-blind placebo-controlled trial evaluating rosiglitazone for the prevention of atherosclerosis progression after coronary artery bypass graft surgery in patients with type 2 diabetes. Design and rationale of the VeIn-Coronary aTherOsclerosis and Rosiglitazone after bypass surgerY (VICTORY) trial. Can J Cardiol. 2009;25(9):509–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gerstein HC, Ratner RE, Cannon CP, et al. Effect of rosiglitazone on progression of coronary atherosclerosis in patients with type 2 diabetes mellitus and coronary artery disease: the assessment on the prevention of progression by rosiglitazone on atherosclerosis in diabetes patients with cardiovascular history trial. Circulation. 2010;121(10):1176–87.

    CAS  PubMed  Google Scholar 

  72. Choi D, Kim SK, Choi SH, et al. Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care. 2004;27(11):2654–60.

    CAS  PubMed  Google Scholar 

  73. Christou GA, Kiortsis DN. The role of adiponectin in renal physiology and development of albuminuria. J Endocrinol. 2014;221(2):R49-61.

    CAS  PubMed  Google Scholar 

  74. Ghanim H, Dhindsa S, Aljada A, Chaudhuri A, Viswanathan P, Dandona P. Low-dose rosiglitazone exerts an antiinflammatory effect with an increase in adiponectin independently of free fatty acid fall and insulin sensitization in obese type 2 diabetics. J Clin Endocrinol Metab. 2006;91(9):3553–8.

    CAS  PubMed  Google Scholar 

  75. Tiikkainen M, Häkkinen AM, Korsheninnikova E, Nyman T, Mäkimattila S, Yki-Järvinen H. Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes. 2004;53(8):2169–76.

    CAS  PubMed  Google Scholar 

  76. Kang ES, Park SY, Kim HJ, et al. The influence of adiponectin gene polymorphism on the rosiglitazone response in patients with type 2 diabetes. Diabetes Care. 2005;28(5):1139–44.

    CAS  PubMed  Google Scholar 

  77. Tan GD, Debard C, Funahashi T, et al. Changes in adiponectin receptor expression in muscle and adipose tissue of type 2 diabetic patients during rosiglitazone therapy. Diabetologia. 2005;48(8):1585–9.

    CAS  PubMed  Google Scholar 

  78. Yang WS, Jeng CY, Wu TJ, et al. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care. 2002;25(2):376–80.

    CAS  PubMed  Google Scholar 

  79. Kadoglou NP, Kapelouzou A, Tsanikidis H, Vitta I, Liapis CD, Sailer N. Effects of rosiglitazone/metformin fixed-dose combination therapy and metformin monotherapy on serum vaspin, adiponectin and IL-6 levels in drug-naïve patients with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2011;119(2):63–8.

    CAS  PubMed  Google Scholar 

  80. Esteghamati A, Azizi R, Ebadi M, et al. The comparative effect of pioglitazone and metformin on serum osteoprotegerin, adiponectin and intercellular adhesion molecule concentrations in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Exp Clin Endocrinol Diabetes. 2015;123(5):289–95.

    CAS  PubMed  Google Scholar 

  81. Oz O, Tuncel E, Eryilmaz S, et al. Arterial elasticity and plasma levels of adiponectin and leptin in type 2 diabetic patients treated with thiazolidinediones. Endocrine. 2008;33(1):101–5.

    CAS  PubMed  Google Scholar 

  82. Miyazaki Y, DeFronzo RA. Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients. Diabetes Obes Metab. 2008;10(12):1204–11.

    CAS  PubMed  Google Scholar 

  83. Sarafidis PA, Stafylas PC, Georgianos PI, Saratzis AN, Lasaridis AN. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a meta-analysis. Am J Kidney Dis. 2010;55(5):835–47.

    CAS  PubMed  Google Scholar 

  84. Bakris GL, Ruilope LM, McMorn SO, et al. Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria. J Hypertens. 2006;24(10):2047–55.

    CAS  PubMed  Google Scholar 

  85. Miyazaki Y, Cersosimo E, Triplitt C, DeFronzo RA. Rosiglitazone decreases albuminuria in type 2 diabetic patients. Kidney Int. 2007;72(11):1367–73.

    CAS  PubMed  Google Scholar 

  86. Lebovitz HE, Dole JF, Patwardhan R, Rappaport EB, Freed MI, Rosiglitazone Clinical Trials Study Group. Rosiglitazone monotherapy is effective in patients with type 2 diabetes. J Clin Endocrinol Metab. 2001;6(1):280–8.

    Google Scholar 

  87. Neuschwander-Tetri BA, Brunt EM, Wehmeier KR, Oliver D, Bacon BR. Improved nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-gamma ligand rosiglitazone. Hepatology. 2003;38(4):1008–17.

    CAS  PubMed  Google Scholar 

  88. Salmela PI, Sotaniemi EA, Niemi M, Mäentausta O. Liver function tests in diabetic patients. Diabetes Care. 1984;7(3):248–54.

    CAS  PubMed  Google Scholar 

  89. Jick SS, Stender M, Myers MW. Frequency of liver disease in type 2 diabetic patients treated with oral antidiabetic agents. Diabetes Care. 1999;22(12):2067–71.

    CAS  PubMed  Google Scholar 

  90. McCullough AJ. Pathophysiology of nonalcoholic steatohepatitis. J Clin Gastroenterol. 2006;40:S17–29.

    CAS  PubMed  Google Scholar 

  91. Said A, Akhter A. Meta-analysis of randomized controlled trials of pharmacologic agents in non-alcoholic steatohepatitis. Ann Hepatol. 2017;16(4):538–47.

    CAS  PubMed  Google Scholar 

  92. Chalasani N, Teal E, Hall SD. Effect of rosiglitazone on serum liver biochemistries in diabetic patients with normal and elevated baseline liver enzymes. Am J Gastroenterol. 2005;100(6):1317–21.

    CAS  PubMed  Google Scholar 

  93. Lee SM, Pusec CM, Norris GH, et al. Hepatocyte-specific loss of PPARγ protects mice from NASH and increases the therapeutic effects of rosiglitazone in the liver. Cell Mol Gastroenterol Hepatol. 2021;11(5):1291–311.

    PubMed  PubMed Central  Google Scholar 

  94. Lee TI, Chen YC, Kao YH, Hsiao FC, Lin YK, Chen YJ. Rosiglitazone induces arrhythmogenesis in diabetic hypertensive rats with calcium handling alteration. Int J Cardiol. 2013;165(2):299–307.

    PubMed  Google Scholar 

  95. Moreland-Head LN, Coons JC, Seybert AL, Gray MP, Kane-Gill SL. Use of disproportionality analysis to identify previously unknown drug-associated causes of cardiac arrhythmias using the food and drug administration adverse event reporting system (FAERS) database. J Cardiovasc Pharmacol Ther. 2021;6:1074248420984082.

    Google Scholar 

  96. Leonard CE, Brensinger CM, Dawwas GK, et al. The risk of sudden cardiac arrest and ventricular arrhythmia with rosiglitazone versus pioglitazone: real-world evidence on thiazolidinedione safety. Cardiovasc Diabetol. 2020;19(1):25.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Korantzopoulos P, Kokkoris S, Kountouris E, Protopsaltis I, Siogas K, Melidonis A. Regression of paroxysmal atrial fibrillation associated with thiazolidinedione therapy. Int J Cardiol. 2008;125(3):e51–3.

    PubMed  Google Scholar 

  98. Liu T, Zhao H, Li J, Korantzopoulos P, Li G. Rosiglitazone attenuates atrial structural remodeling and atrial fibrillation promotion in alloxan-induced diabetic rabbits. Cardiovasc Ther. 2014;32(4):178–83.

    CAS  PubMed  Google Scholar 

  99. Palee S, Weerateerangkul P, Chinda K, Chattipakorn SC, Chattipakorn N. Mechanisms responsible for beneficial and adverse effects of rosiglitazone in a rat model of acute cardiac ischaemia-reperfusion. Exp Physiol. 2013;98(5):1028–37.

    CAS  PubMed  Google Scholar 

  100. Zhang Z, Zhang X, Korantzopoulos P, et al. Thiazolidinedione use and atrial fibrillation in diabetic patients: a meta-analysis. BMC Cardiovasc Disord. 2017;17(1):96.

    PubMed  PubMed Central  Google Scholar 

  101. Pallisgaard JL, Brooks MM, Chaitman BR, et al. Thiazolidinediones and risk of atrial fibrillation among patients with diabetes and coronary disease. Am J Med. 2018;131(7):805–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pallisgaard JL, Lindhardt TB, Staerk L, et al. Thiazolidinediones are associated with a decreased risk of atrial fibrillation compared with other antidiabetic treatment: a nationwide cohort study. Eur Heart J Cardiovasc Pharmacother. 2017;3(3):140–6.

    PubMed  Google Scholar 

  103. Chao TF, Leu HB, Huang CC, et al. Thiazolidinediones can prevent new onset atrial fibrillation in patients with non-insulin dependent diabetes. Int J Cardiol. 2012;156(2):199–202.

    PubMed  Google Scholar 

  104. Palee S, Weerateerangkul P, Surinkeaw S, Chattipakorn S, Chattipakorn N. Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart. Exp Physiol. 2011;96(8):778–89.

    CAS  PubMed  Google Scholar 

  105. Sarraf M, Lu L, Ye S, Reiter MJ, Greyson CR, Schwartz GG. Thiazolidinedione drugs promote onset, alter characteristics, and increase mortality of ischemic ventricular fibrillation in pigs. Cardiovasc Drugs Ther. 2012;26(3):195–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu L, Reiter MJ, Xu Y, Chicco A, Greyson CR, Schwartz GG. Thiazolidinedione drugs block cardiac KATP channels and may increase propensity for ischaemic ventricular fibrillation in pigs. Diabetologia. 2008;51(4):675–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Shen LQ, Child A, Weber GM, Folkman J, Aiello LP. Rosiglitazone and delayed onset of proliferative diabetic retinopathy. Arch Ophthalmol. 2008;126(6):793–9.

    PubMed  Google Scholar 

  108. Doonan F, Wallace DM, O’Driscoll C, Cotter TG. Rosiglitazone acts as a neuroprotectant in retinal cells via up-regulation of sestrin-1 and SOD-2. J Neurochem. 2009;109(2):631–43.

    CAS  PubMed  Google Scholar 

  109. Li P, Xu X, Zheng Z, Zhu B, Shi Y, Liu K. Protective effects of rosiglitazone on retinal neuronal damage in diabetic rats. Curr Eye Res. 2011;36(7):673–9.

    CAS  PubMed  Google Scholar 

  110. Yang X, Wu S, Feng Z, Yi G, Zheng Y, Xia Z. Combination therapy with semaglutide and rosiglitazone as a synergistic treatment for diabetic retinopathy in rodent animals. Life Sci. 2021;269:119013.

    CAS  PubMed  Google Scholar 

  111. Murata T, Hata Y, Ishibashi T, et al. Response of experimental retinal neovascularization to thiazolidinediones. Arch Ophthalmol. 2001;119(5):709–17.

    CAS  PubMed  Google Scholar 

  112. Higuchi A, Ohashi K, Shibata R, Sono-Romanelli S, Walsh K, Ouchi N. Thiazolidinediones reduce pathological neovascularization in ischemic retina via an adiponectin-dependent mechanism. Arterioscler Thromb Vasc Biol. 2010;30(1):46–53.

    CAS  PubMed  Google Scholar 

  113. Abdelrahman M, Sivarajah A, Thiemermann C. Beneficial effects of PPAR-gamma ligands in ischemia-reperfusion injury, inflammation and shock. Cardiovasc Res. 2005;65(4):772–81.

    CAS  PubMed  Google Scholar 

  114. Sivarajah A, Chatterjee PK, Patel NS, et al. Agonists of peroxisome-proliferator activated receptor-gamma reduce renal ischemia/reperfusion injury. Am J Nephrol. 2003;23(4):267–76.

    CAS  PubMed  Google Scholar 

  115. Xu Y, Li X, Cheng Y, Yang M, Wang R. Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion. FASEB J. 2020;34(12):16262–75.

    CAS  PubMed  Google Scholar 

  116. Kuboki S, Shin T, Huber N, et al. Peroxisome proliferator-activated receptor-gamma protects against hepatic ischemia/reperfusion injury in mice. Hepatology. 2008;47(1):215–24.

    CAS  PubMed  Google Scholar 

  117. Betz B, Schneider R, Kress T, Schick MA, Wanner C, Sauvant C. Rosiglitazone affects nitric oxide synthases and improves renal outcome in a rat model of severe ischemia/reperfusion injury. PPAR Res. 2012. https://doi.org/10.1155/2012/219319.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gonon AT, Bulhak A, Labruto F, Sjöquist PO, Pernow J. Cardioprotection mediated by rosiglitazone, a peroxisome proliferator-activated receptor gamma ligand, in relation to nitric oxide. Basic Res Cardiol. 2007;102(1):80–9.

    CAS  PubMed  Google Scholar 

  119. Villegas I, Martín AR, Toma W, de la Lastra CA. Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, protects against gastric ischemia-reperfusion damage in rats: role of oxygen free radicals generation. Eur J Pharmacol. 2004;505(1–3):195–203.

    CAS  PubMed  Google Scholar 

  120. Liu YI, Liu Z, Chen Y, Xu K, Dong J. PPARγ activation reduces ischemia/reperfusion-induced metastasis in a murine model of hepatocellular carcinoma. Exp Ther Med. 2016;11(2):387–96.

    PubMed  Google Scholar 

  121. Abe M, Takiguchi Y, Ichimaru S, Kaji S, Tsuchiya K, Wada K. Different effect of acute treatment with rosiglitazone on rat myocardial ischemia/reperfusion injury by administration method. Eur J Pharmacol. 2008;589(1–3):215–9.

    CAS  PubMed  Google Scholar 

  122. Zheng N, Shao H, Wu D, Shen D, Lin X. Protective influence of rosiglitazone against testicular ischaemia-reperfusion injury in rats. Andrologia. 2018. https://doi.org/10.1111/and.12947.

    Article  PubMed  Google Scholar 

  123. Zhang XJ, Xiong ZB, Tang AL, et al. Rosiglitazone-induced myocardial protection against ischaemia-reperfusion injury is mediated via a phosphatidylinositol 3-kinase/Akt-dependent pathway. Clin Exp Pharmacol Physiol. 2010;37(2):156–61.

    CAS  PubMed  Google Scholar 

  124. Kilter H, Werner M, Roggia C, et al. The PPAR-gamma agonist rosiglitazone facilitates Akt rephosphorylation and inhibits apoptosis in cardiomyocytes during hypoxia/reoxygenation. Diabetes Obes Metab. 2009;11(11):1060–7.

    CAS  PubMed  Google Scholar 

  125. Punthakee Z, Bosch J, Dagenais G, et al. Design, history and results of the Thiazolidinedione Intervention with vitamin D Evaluation (TIDE) randomised controlled trial. Diabetologia. 2012;55(1):36–45.

    CAS  PubMed  Google Scholar 

  126. Sakamoto J, Kimura H, Moriyama S, et al. Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun. 2000;278(3):704–11.

    CAS  PubMed  Google Scholar 

  127. Deeg MA, Buse JB, Goldberg RB, et al. Pioglitazone and rosiglitazone have different effects on serum lipoprotein particle concentrations and sizes in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2007;30(10):2458–64.

    CAS  PubMed  Google Scholar 

  128. Young PW, Buckle DR, Cantello BC, et al. Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor gamma. J Pharmacol Exp Ther. 1998;284(2):751–9.

    CAS  PubMed  Google Scholar 

  129. Vijay SK, Mishra M, Kumar H, Tripathi K. Effect of pioglitazone and rosiglitazone on mediators of endothelial dysfunction, markers of angiogenesis and inflammatory cytokines in type-2 diabetes. Acta Diabetol. 2009;46(1):27–33.

    CAS  PubMed  Google Scholar 

  130. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.

    CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

BX is responsible for document retrieval, article writing and inspection. AX is responsible for document retrieval and article inspection. SL is responsible for document retrieval and typesetting.

Corresponding author

Correspondence to Bo Xu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Human and animal rights and informed consent

This article does not include any new research on humans or animals by any author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Xing, A. & Li, S. The forgotten type 2 diabetes mellitus medicine: rosiglitazone. Diabetol Int 13, 49–65 (2022). https://doi.org/10.1007/s13340-021-00519-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-021-00519-0

Keywords

Navigation