Skip to main content
Log in

Genomic and antibody-based assays for the detection of Indian strains of Macrobrachium rosenbergii nodavirus and extra small virus associated with white tail disease of Macrobrachium rosenbergii

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

White tail disease (WTD) of cultured Macrobrachium rosenbergii is caused by Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV). Since both the viruses have small single strand RNA as genetic material with short generation time, they are more prone to mutations. Hence detection methods developed for one strain may be suboptimal for the detection of isolates from the different geographical locations. In the present study two new genomic based methods (RT-PCR and dot-blot hybridization) along with one immunological method (polyclonal antibodies based detection) were developed for the detection of Indian isolates of MrNV and XSV. Among genomic based methods, RT-PCR assay developed was most sensitive. Sensitivity of detection of RT-PCR was 1 fg (both MrNV and XSV) of total RNA extracted from purified viral inoculum preparation. In case of WTD positive whole tissue total RNA, the limit of detection was 10 fg for both MrNV and XSV. Dot-blot hybridization had a detection limit of 10 pg and 0.1 ng for MrNV and XSV respectively when RNA extracted from viral inoculum preparation was used; 0.1 ng and 1 ng when WTD positive whole tissue total RNA was used. Polyclonal antibodies against recombinant proteins (MrNV and XSV capsid) were synthesised. Western blotting and indirect ELISA revealed that the antibodies produced to be specific and highly sensitive. Recombinant protein (antigen) of MrNV and XSV capsid were detected at the dilution of 1:8000. However in case of infected prawn tissue sample, MrNV and XSV were detected at the dilution of 1:32,000 and 1:64,000 respectively. All methods developed are field applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arcier JM, Herman F, Lightner DV, Redman R, Mari J, Bonami JR. A viral disease associated with mortalities in hatchery-reared postlarvae of the giant freshwater prawn Macrobrachium rosenbergii. Dis Aquat Org. 1999;38:177–81.

    Google Scholar 

  2. Bonami JR, Sri WJ. Viral diseases of the giant fresh water prawns Macrobrachium rosenbergii: a review. J Invertebr Pathol. 2011;106:131–42.

    PubMed  Google Scholar 

  3. Chen LL, Lo CF, Chiu YL, Chang CF, Kou GH. Natural and experimental infection of white spot syndrome virus WSSV in benthic larvae of mud crab Scylla serrata. Dis Aquat Org. 2000;40:157–61.

    CAS  Google Scholar 

  4. Chong LC, Ganesan H, Yong CY, Tan WS, Ho KL. Expression, purification and characterization of the dimeric protruding domain of Macrobrachium rosenbergii nodavirus capsid protein expressed in Escherichia coli. PLoS ONE. 2019;14(2):e0211740.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dalla Valle L, Zanella L, Patarnello P, Paolucci L, Belvedere P, Colombo L. Development of a sensitive diagnostic assay for fish nervous necrosis virus based on RT-PCR plus nested PCR. J Fish Dis. 2000;23:321–7.

    CAS  Google Scholar 

  6. Elena SF, Sanjuan R. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J Virol. 2005;79:11555–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Engvall E, Perlman P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971;8(9):871–4.

    CAS  PubMed  Google Scholar 

  8. Farook MA, Madan N, Taju G, Abdul Majeed S, Nambi KSN, Sundar Raj N, et al. Production of recombinant capsid protein of Macrobrachium rosenbergii nodavirus (r-MCP43) of giant freshwater prawn, M rosenbergii (de Man) for immunological diagnostic methods. J Fish Dis. 2014;37:703–10.

    CAS  PubMed  Google Scholar 

  9. Hsieh CY, Wu ZB, Tung MC, Tu C, Lo SP, Chang TC, et al. In situ hybridization and RT-PCR detection of Macrobrachium rosenbergii nodavirus in giant freshwater prawn, Macrobrachium rosenbergii (de Man), in Taiwan. J Fish Dis. 2006;29:665–71.

    CAS  PubMed  Google Scholar 

  10. Jariyaponga P, Pudgerd A, Weerachatyanukul W, Hirono I, Senapinf S, Dhar AK, et al. Construction of an infectious Macrobrachium rosenbergii nodavirus from cDNA clones in Sf9 cells and improved recovery of viral RNA with AZT treatment. Aquaculture. 2018;483:111–9.

    Google Scholar 

  11. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    CAS  PubMed  Google Scholar 

  12. Lin F, Liu L, Hao GJ, Sheng PC, Cao Z, Zhou Y, Lv P, Xu T, Shen J, Chen K. The development and application of a duplex reverse transcription loop-mediated isothermal amplification assay combined with a lateral flow dipstick method for Macrobrachium rosenbergii nodavirus and extra small virus isolated in China. Mol Cell Probes. 2018;40:1–7.

    CAS  PubMed  Google Scholar 

  13. Liu J, Yang WJ, Zhu XJ, Karouna-Renier NK, Rao RK. Molecular cloning and expression of two HSP70 genes in the prawn, Macrobrachium rosenbergii. Cell Stress Chaperones. 2004;9:313–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lo CF, Leu JH, Ho CH, Chen CH, Peng SE, Chen YT, et al. Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. Dis Aquat Org. 1996;25:133–41.

    CAS  Google Scholar 

  15. Lo CF, Ho CH, Peng SE, Chen CH, Hsu HC, Chiu YL, et al. Virus-associated white spot syndrome of shrimp in Taiwan: a review. Fish Pathol. 1996;33:365–71.

    Google Scholar 

  16. Low C-F, MdYusoff MR, Kuppusamy G, Ahmad Nadzri NF. Molecular biology of Macrobrachium rosenbergii nodavirus infection in giant freshwater prawn. J Fish Dis. 2018;41(12):1771–81.

    CAS  PubMed  Google Scholar 

  17. Magbanua FO, Natividad KT, Migo VP, Alfafara CG, de la Pena FO, Miranda RO, et al. White Spot Syndrome virus (WSSV) in cultured Penaeus monodon in the Philippines. Dis Aquat Org. 2000;42:77–82.

    CAS  Google Scholar 

  18. Murwantoko M, Bimantara A, Roosmanto R, Kawaichi M. Macrobrachium rosenbergii nodavirus infection in a giant freshwater prawn hatchery in Indonesia. SpringerPlus. 2016;5(1):1729.

    PubMed  PubMed Central  Google Scholar 

  19. Naveen Kumar S, Shekar M, Karunasagar I, Karunasagar I. Genetic analysis of RNA1 and RNA2 of Macrobrachium rosenbergii nodavirus (MrNV) isolated from India. Virus Res. 2013;173:377–85.

    CAS  Google Scholar 

  20. Naveen Kumar S, Hassan MA, Mahmoud MA, Al-Ansari A, Al-Shwared WK. Betanodavirus infection in reared marine fishes along the Arabian Gulf. Aquacult Int. 2017;25(4):1543–54.

    Google Scholar 

  21. Neethi V, Sivakumar N, Kumar K, Rajendran KV, Makesh M. Production and application of polyclonal antibodies against recombinant capsid protein of extra small virus of Macrobrachium rosenbergii. Indian J Virol. 2012;23(3):374–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Owens L, La Fauce K, Juntunen K, Hayakijkosol O, Zeng C. Macrobrachium rosenbergii nodavirus disease (white tail disease) in Australia. Dis Aquat Org. 2009;85:175–80.

    CAS  Google Scholar 

  23. Peck KM, Lauringa AS. Complexities of viral mutation rates. J Virol. 2018;92(14):e01031-e1117.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pillai D, Bonami JR, Sri WJ. Rapid detection of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV), the pathogenic agents of white tail disease of Macrobrachium rosenbergii (De Man), by loop-mediated isothermal amplification. J Fish Dis. 2006;29:275–83.

    CAS  PubMed  Google Scholar 

  25. Qian D, Shi Z, Zhang S, Cao Z, Liu W, Li L, et al. Extra small virus-like particles (XSV) and nodavirus associated with whitish muscle disease in the giant freshwater prawn, Macrobrachium rosenbergii. J Fish Dis. 2003;26:521–7.

    CAS  PubMed  Google Scholar 

  26. Qian D, Liu W, Jianxiang W, Yu L. Preparation of monoclonal antibody against Macrobrachium rosenbergii nodavirus and applications of TAS–ELISA for virus diagnosis in post-larvae hatcheries in East China during 2000–2004. Aquaculture. 2006;261:1144–50.

    CAS  Google Scholar 

  27. Qiu W, Scholthof KB. Satellite panicum mosaic virus capsid protein elicits symptoms on a non-host plant and interferes with a suppressor of virus-induced gene silencing. Mol Plant-Microbe Interact. 2004;17:263–71.

    CAS  PubMed  Google Scholar 

  28. Ravi M, Nazeer Basha A, Sarathi M, RosaIdalia HH, SriWidada J, Bonami JR, et al. Studies on the occurrence of white tail disease (WTD) caused by MrNV and XSV in hatchery-reared post-larvae of Penaeus indicus and P. monodon. Aquaculture. 2009;292:117–20.

    Google Scholar 

  29. Ravi M, Sahul Hameed AS. Experimental transmission of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) in Macrobrachium malcolmsonii and Macrobrachium rude. Aquacult Int. 2014;23(1):195–201.

    Google Scholar 

  30. Romestand B, Bonami JR. A sandwich enzyme linked immunosorbent assay (S-ELISA) for detection of MrNV in the giant freshwater prawn, Macrobarchium rosenbergii (de Man). J Fish Dis. 2003;26:71–5.

    CAS  PubMed  Google Scholar 

  31. Saedi TA, Hassan M, Wen TS, Khatijah Y, Hassan DM, Kua CB, et al. Detection and phylogenetic profiling of nodavirus associated with white tail disease in Malaysian Macrobrachium rosenbergii (de Man). Mol Biol Rep. 2012;39:5785–90.

    CAS  PubMed  Google Scholar 

  32. Sahul Hameed AS, Yoganandhan K, Sri Widada J, Bonami JR. Studies on the occurrence and RT-PCR detection of Macrobrachium rosenbergii nodavirus and extra small virus-like particles associated with white tail disease of Macrobrachium rosenbergii in India. Aquaculture. 2004;238:127–33.

    CAS  Google Scholar 

  33. Sahul Hameed AS, Ravi M, Farook MA, Taju G, Hernandez-Herrera RI, Bonami JR. Screening the post-larvae of Macrobrachium rosenbergii for early detection of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) by RT–PCR and immunological techniques. Aquaculture. 2011;317:42–7.

    Google Scholar 

  34. Sahul Hameed AS, Bonami JR. White tail disease of freshwater prawn, Macrobrachium rosenbergii. Indian. J Virol. 2012;23(2):134–40.

    CAS  Google Scholar 

  35. Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol. 2010;84:9733–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanjuan R, Domingo-Calap P. Mechanisms of viral mutation. Cell Mol Life Sci. 2016;73:4433–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith DK, Krohn RL, Hermanson GT, Mallia AK, Gartne FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.

    CAS  PubMed  Google Scholar 

  38. Sri Widada J, Durand S, Cambournac I, Qian D, Shi Z, Dejonghe E, et al. Genome-based detection methods of Macrobrachium rosenbergii nodavirus, a pathogen of the giant freshwater prawn, Macrobrachium rosenbergii: dot-blot, in situ hybridization and RT-PCR. J Fish Dis. 2003;26:583–90.

    CAS  PubMed  Google Scholar 

  39. Sri Widada J, Bonami JR. Characteristics of the monocistronic genome of extra small virus, a virus like particle associated with Macrobrachium rosenbergii nodavirus: possible candidate for a new species of satellite virus. J Gen Virol. 2004;85:643–6.

    Google Scholar 

  40. Sri Widada J, Richard V, Shi Z, Qian D, Bonami JR. Dot-blot hybridization and RT-PCR detection of extra small virus (XSV) associated with white tail disease of prawn Macrobrachium rosenbergii. Dis Aquat Org. 2004;58:83–7.

    Google Scholar 

  41. Sudhakaran R, Ishaq Ahmed VP, Haribabu P, Mukherjee SC, Sri Widada J, Bonami JR, et al. Experimental vertical transmission of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) from brooders to progeny in Macrobrachium rosenbergii and Artemia. J Fish Dis. 2007;30:27–35.

    CAS  PubMed  Google Scholar 

  42. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 1979;76:4350–4.

    CAS  PubMed  Google Scholar 

  43. Tripathy S, Sahoo PK, Kumari J, Mishra BK, Sarangi N, Ayyappan S. Multiplex RT-PCR detection and sequence comparison of viruses MrNV and XSV associated with white tail disease in Macrobrachium rosenbergii. Aquaculture. 2006;258:134–9.

    CAS  Google Scholar 

  44. Tung CW, Wang CS, Chen SN. Histological and electron microscopy study on Macrobrachium muscle virus (MMV) infection in the giant freshwater prawn, Macrobrachium rosenbergii (de Man), cultured in Taiwan. J Fish Dis. 1999;22:1–5.

    Google Scholar 

  45. Venegas CA, Nonaka L, Mushiake K, Nishizawa T, Muroga K. Pathogenicity of penaeid rod-shaped DNA virus PRDV to kuruma prawn at different development stages. Fish Pathol. 1999;170:179–94.

    Google Scholar 

  46. Wang CS, Chang JS, Shih HH, Chen SN. RT-PCR amplification and sequence analysis of extra small virus associated with white tail disease of Macrobrachium rosenbergii (de Man) cultured in Taiwan. J Fish Dis. 2007;30:127–32.

    CAS  PubMed  Google Scholar 

  47. Yoganandhan K, Leartvibhas M, Sriwongpuk S, Limsuwan C. White tail disease of the giant freshwater prawn Macrobrachium rosenbergii in Thailand. Dis Aquat Org. 2006;69:255–8.

    CAS  Google Scholar 

  48. Zhang H, Wang J, Yuan J, Li L, Zhang Z, Bonami JR, et al. Quantitative relationship of two viruses (MrNV and XSV) in white-tail disease of Macrobrachium rosenbergii. Dis Aquat Org. 2006;71:11–7.

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support received from the COE-Programme support to aquaculture and marine biotechnology, Department of Biotechnology, Government of India, towards this study is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrani Karunasagar.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveen Kumar, S., Rai, P., Karunasagar, I. et al. Genomic and antibody-based assays for the detection of Indian strains of Macrobrachium rosenbergii nodavirus and extra small virus associated with white tail disease of Macrobrachium rosenbergii. VirusDis. 31, 459–469 (2020). https://doi.org/10.1007/s13337-020-00641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-020-00641-8

Keywords

Navigation