Skip to main content
Log in

Limiting behaviors of constrained minimizers for the mass subcritical fractional NLS equations

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the asymptotic properties of solutions for the constrained minimization problems.

$$\begin{aligned} d_{b_p}(p):=\inf _{\{u\in H^s_V({\mathbb {R}}^2): \int _{{\mathbb {R}}^2}|u|^2dx=1\}}I_{p,b_p}(u), \end{aligned}$$

where \(s\in (\frac{1}{2},1),\) \(p\in (0, 2s)\), \(b_p>0\) and

$$\begin{aligned} I_{p,b_p}(u){:=}\frac{1}{2}\int _{{\mathbb {R}}^2}\left( |(-\Delta )^{\frac{s}{2}}u|^2{+}V(x)|u|^2\right) dx{-}\frac{b_p}{p+2}\int _{{\mathbb {R}}^2}|u|^{p+2}dx,\quad u\in H^s_V({\mathbb {R}}^2). \end{aligned}$$

First, when \(\lim _{p\nearrow 2s}b_p=b<b^*\), the set of minimizers of \(d_{b_p}(p)\) is compact in a suitable space as \(p\nearrow 2s\). In addition, when \(\lim _{p\nearrow 2s}b_p=b\ge b^*\), by developing suitable trial functions for some fine energy estimates, we prove that all minimizers must blow up and give decay properties of minimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Cont, R., Tankov, P.: Financial Modeling with Jump Processes, Chapman Hall/CRC Financial Mathematics Series, Boca Raton (2004)

  2. Chang, S.Y.A., del Mar González, M.: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)

    Article  MathSciNet  Google Scholar 

  3. Du, M., Tian, L.X., Wang, J., Zhang, F.B.: Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials. Proc. Roy. Soc. Edinburgh Sect. A 149, 617–653 (2019)

    Article  MathSciNet  Google Scholar 

  4. Felmer, P., Quaas, A., Tan, J.G.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 142, 1237–1262 (2012)

    Article  MathSciNet  Google Scholar 

  5. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    Book  Google Scholar 

  6. Guo, Y.J., Seiringer, R.: On the mass concentration for Bose–Einstein condensation with attractive interactions. Lett. Math. Phys. 104, 141–156 (2013)

    Article  Google Scholar 

  7. Guo, Y., Zeng, X., Zhou, H.: Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations. J. Differ. Equ. 256, 2079–2100 (2014)

    Article  Google Scholar 

  8. Laskin, N.: Fractional quantum mechanics and L\(\acute{e}\)vy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  Google Scholar 

  9. Liu, L., Teng, K., Yang, J., Chen, H.: Properties of minimizers for the fractional Kirchhoff energy functional. J. Math. Phys. 64, 081504 (2023)

    Article  MathSciNet  Google Scholar 

  10. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. 66, 56–108 (2002)

    MathSciNet  Google Scholar 

  11. Liu, Z.S., Squassina, M., Zhang, J.J.: Ground states for fractional Kirchhoff equations with critical nonlinearity in lowdimension. NoDEA Nonlinear Differ. Equ. Appl. 24, 50 (2017)

    Article  Google Scholar 

  12. Liu, Z.S., Rădulescu, V.D., Yuan, Z.Q.: Concentration of solutions for fractional Kirchhoff equations with discontinuous reaction. Z. Angew. Math. Phys. (2022). https://doi.org/10.1007/s00033-022-01849-y

    Article  MathSciNet  Google Scholar 

  13. Liu, Z.S., Luo, H.J., Zhang, J.J.: Existence and multiplicity of bound state solutions to a kirchhoff type equation with a general nonlinearity. J. Geom. Anal. (2022). https://doi.org/10.1007/s12220-021-00849-0

    Article  MathSciNet  Google Scholar 

  14. Liu, S.L., Chen, H.B.: Fractional Kirchhoff-type equation with singular potential and critical exponent. J. Math. Phys. 62, 111505 (2021)

    Article  MathSciNet  Google Scholar 

  15. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  16. Nezza, D.E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  17. Ni, W.M.: Takagi, On the shape of least-energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 44, 819–851 (1991)

    Article  Google Scholar 

  18. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  19. Su, Y., Liu, Z.S.: Semiclassical states to nonlinear Choquard equation with critical growth. Israel J. Math. 255, 729–762 (2023)

    Article  MathSciNet  Google Scholar 

  20. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \({\mathbb{R} }^N\). J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  Google Scholar 

  21. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    Article  MathSciNet  Google Scholar 

  22. Teng, K.M., Agarwal, R.P.: Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth. Math. Methods Appl. Sci. 41, 8258–8293 (2018)

    Article  MathSciNet  Google Scholar 

  23. Zeng, X.Y.: Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 37, 1749–1762 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their valuable comments and nice suggestions to improve the results. J. Yang is supported by Natural Science Foundation of Hunan Province of China (2023JJ30482, 2022JJ30463), Research Foundation of Education Bureau of Hunan Province (23A0558,22A0540), and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally in this article. They have all read and approved the final manuscript.

Corresponding author

Correspondence to Lintao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Chen, H. & Liu, L. Limiting behaviors of constrained minimizers for the mass subcritical fractional NLS equations. Anal.Math.Phys. 14, 32 (2024). https://doi.org/10.1007/s13324-024-00899-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-024-00899-x

Keywords

Mathematics Subject Classification

Navigation