Skip to main content
Log in

Semiclassical states to the nonlinear Choquard equation with critical growth

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We are concerned with the following Choquard equation:

$$ - {\varepsilon ^2}\Delta u + V(x)u = {\varepsilon ^{- \alpha}}({I_\alpha} * F(u)){F^\prime}(u),\,\,\,\,\,\,x \in {\mathbb{R}^N},$$

where N ⩾ 4, α ∈ (0, N), Iα is the Riesz potential and ε > 0 is a small parameter. Note that \(F(u): = {1 \over q}|u{|^q} + {1 \over {2_\alpha ^ *}}|u{|^{2_\alpha ^ *}}\), where 2 #α < q < 2 *α , and \(2_\alpha ^\sharp : = {{N + \alpha} \over N}\) and \(2_\alpha ^ * : = {{N + \alpha} \over {N - 2}}\) are lower and upper critical exponents in the sense of the Hardy–Littlewood–Sobolev inequality. In this paper, we construct a bound-state concentrating at an isolated component of the positive local minimum points of V as ε → 0 for each q ∈ (2 #α , 2 *α ). This result extends some results established in Cingolani–Tanaka [Rev. Mat. Iberoam. 35 (2019)] for the case q < 2 which was seen as an open problem in Moroz–Van Schaftingen [Calc. Var. Partial Differential Equations 52 (2015)]. The proof of the current paper uses variational methods, a truncation technique and a new regularity result that we develop in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. O. Alves, F. Gao, M. Squassina and M. Yang, Singularly perturbed critical Choquard equations, Journal of Differential Equations 263 (2017), 3943–3988.

    MathSciNet  MATH  Google Scholar 

  2. V. Ambrosio, Concentration phenomena for a fractional Choquard equation with magnetic field, Dynamics of Partial Differential Equations 16 (2019), 125–149.

    MathSciNet  MATH  Google Scholar 

  3. V. Ambrosio, Multiplicity and concentration results for a fractional Choquard equation via penalization method, Potential Analysis 50 (2019), 55–82.

    MathSciNet  MATH  Google Scholar 

  4. J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Archive for Rational Mechanics and Analysis 185 (2007), 185–200.

    MathSciNet  MATH  Google Scholar 

  5. J. Byeon and L. Jeanjean, Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity, Discrete and Continuous Dynamical Systems 19 (2007), 255–269.

    MathSciNet  MATH  Google Scholar 

  6. J. Byeon and Z. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations. II, Calculus of Variations and Partial Differential Equations 18 (2003), 207–219.

    MathSciNet  MATH  Google Scholar 

  7. D. Cassani and J. Zhang, Choquard-type equations with Hardy–Littlewood–Sobolev upper-critical growth, Advances in Nonlinear Analysis 8 (2019), 1184–1212.

    MathSciNet  MATH  Google Scholar 

  8. D. Cassani, J. Van Schaftingen and J. Zhang, Groundstates for Choquard type equations with Hardy–Littlewood–Sobolev lower critical exponent, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics 15 (2020), 1377–1400.

    MathSciNet  MATH  Google Scholar 

  9. S. Cingolani, S. Secchi and M. Squassina, Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics 140 (2010), 973–1009.

    MathSciNet  MATH  Google Scholar 

  10. S. Cingolani, M. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Zeitschrift für Angewandte Mathematik und Physik 63 (2012), 233–248.

    MathSciNet  MATH  Google Scholar 

  11. S. Cingolani and K. Tanaka, Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well, Revista Matemática Iberoamericana 35 (2019), 1885–1924.

    MathSciNet  MATH  Google Scholar 

  12. M. del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations, Journal Functional Analysis 149 (1997), 245–265.

    MathSciNet  MATH  Google Scholar 

  13. A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, Journal of Functional Analysis 69 (1986), 397–408.

    MathSciNet  MATH  Google Scholar 

  14. M. Gallo, Multiplicity and concentration results for local and fractional NLS equations with critical growth, Advances in Differential Equations 26 (2021), 397–424.

    MathSciNet  MATH  Google Scholar 

  15. F. Gao and M. Yang, The Brezis–Nirenberg type critical problem for the nonlinear Choquard equation, Science China Mathematics 61 (2018), 1219–1242.

    MathSciNet  MATH  Google Scholar 

  16. J. Giacomoni, D. Goel and K. Sreenadh, Regularity results on a class of doubly nonlocal problems, Journal of Differential Equations 268 (2020), 5301–5328.

    MathSciNet  MATH  Google Scholar 

  17. C. Ji and V. D. Rădulescu, Concentration phenomena for nonlinear magnetic Schrödinger equations with critical growth, Israel Journal of Mathematics 241 (2021), 465–500.

    MathSciNet  MATH  Google Scholar 

  18. E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Applied Mathematics 57 (1976/77), 93–105.

    MathSciNet  MATH  Google Scholar 

  19. E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  20. P. L. Lions, The Choquard equation and related questions, Nonlinear Analysis 4 (1980), 1063–1072.

    MathSciNet  MATH  Google Scholar 

  21. P. L. Lions, Compactness and topological methods for some nonlinear variational problems of mathematical physics, in Nonlinear Problems: Present and Future (Los Alamos, NM, 1981), North-Holland Mathematics Studies, Vol. 61, North-Holland, Amsterdam–New York, 1982, pp. 17–34.

    Google Scholar 

  22. X. Liu, S. Ma and J. Xia, Multiple bound states of higher topological type for semiclassical Choquard equations, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics 151 (2021), 329–355.

    MathSciNet  MATH  Google Scholar 

  23. L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Archive for Rational Mechanics and Analysis 195 (2010), 455–467.

    MathSciNet  MATH  Google Scholar 

  24. V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Transactions of the American Mathematical Society 367 (2015), 6557–6579.

    MathSciNet  MATH  Google Scholar 

  25. V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent, Communications in Contemporary Mathematics 17 (2015), Article no. 1550005.

  26. V. Moroz and J. Van Schaftingen, Semi-classical states for the Choquard equation, Calculus of Variations and Partial Differential Equations 52 (2015), 199–235.

    MathSciNet  MATH  Google Scholar 

  27. V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, Journal of Fixed Point Theory and Applications 19 (2017), 773–813.

    MathSciNet  MATH  Google Scholar 

  28. T. Mukherjee and K. Sreenadh, Fractional Choquard equation with critical nonlinearities, Nonlinear Differential Equations and Applications 24 (2017), Article no. 63.

  29. Y. Oh, Correction to: “Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, Communications in Partial Differential Equations 14 (1989), 833–834.

    MathSciNet  MATH  Google Scholar 

  30. G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calculus of Variations and Partial Differential Equations 50 (2014), 799–829.

    MathSciNet  MATH  Google Scholar 

  31. S. Pekar, Untersuchungüber die elektronentheorie der kristalle, Akademie, Berlin, 1954.

    MATH  Google Scholar 

  32. R. Penrose, On gravity’s role in quantum state reduction, General Relativity and Gravitation 28 (1996), 581–600.

    MathSciNet  MATH  Google Scholar 

  33. S. Qi and W. Zou, Semiclassical states for critical Choquard equations, Journal of Mathematical Analysis and Applications 498 (2021), Article no. 124985.

  34. P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Zeitschrift für Angewandte Mathematik und Physik 43 (1992), 270–291.

    MathSciNet  MATH  Google Scholar 

  35. P. H. Rabinowitz, Minimax Methods in Critical Point Theory With Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, Vol. 65, American Mathematical Society, Providence, RI, 1986.

    MATH  Google Scholar 

  36. S. Secchi, A note on Schrödinger-Newton systems with decaying electric potential, Nonlinear Analysis 72 (2010), 3842–3856.

    MathSciNet  MATH  Google Scholar 

  37. J. Seok, Nonlinear Choquard equations: doubly critical case, Applied Mathematics Letters 76 (2018), 148–156.

    MathSciNet  MATH  Google Scholar 

  38. Y. Su, New result for nonlinear Choquard equations: doubly critical case, Applied Mathematics Letters 102 (2020), Article no. 106092.

  39. Y. Su, L. Wang, H. Chen and S. Liu, Multiplicity and concentration results for fractional Choquard equations: doubly critical case, Nonlinear Analysis 198 (2020), Article no. 111872.

  40. X. Sun and Y. Zhang, Multi-peak solution for nonlinear magnetic Choquard type equation, Journal of Mathematical Physics 55 (2014), Article no. 031508.

  41. J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger–Newton equations, Journal of Mathematical Physics 50 (2009), Article no. 012905.

  42. M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Vol. 24, Birkhäauser, Boston, MA, 1996.

    MATH  Google Scholar 

  43. M. Yang and Y. Ding, Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part, Communications on Pure and Applied Analysis 12 (2013), 771–783.

    MathSciNet  MATH  Google Scholar 

  44. M. Yang, J. Zhang and Y. Zhang, Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity, Communications on Pure and Applied Analysis 16 (2017), 493–512.

    MathSciNet  MATH  Google Scholar 

  45. J. Zhang, Z. Chen and W. Zou, Standing waves for nonlinear Schrödinger equations involving critical growth, Journal of the London Mathematical Society 90 (2014), 827–844.

    MathSciNet  MATH  Google Scholar 

  46. J. Zhang and W. Zou, Solutions concentrating around the saddle points of the potential for critical Schrödinger equations, Calculus of Variations and Partial Differential Equations 54 (2015), 4119–4142.

    MathSciNet  MATH  Google Scholar 

  47. J. Zhang and J. do Ó, Standing waves for nonlinear Schrödinger equations involving critical growth of Trudinger–Moser type, Zetischrift für Angewandte Mathematik und Physik 66 (2015), 3049–3060.

    MATH  Google Scholar 

  48. J. Zhang, Q. Wu and D. Qin, Semiclassical solutions for Choquard equations with Berestycki–Lions type conditions, Nonlinear Analysis 188 (2019), 22–49.

    MathSciNet  MATH  Google Scholar 

  49. J. Zhang, W. Lü and Z. Lou, Multiplicity and concentration behavior of solutions of the critical Choquard equation, Applicable Analysis 100 (2021), 167–190.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisu Liu.

Additional information

Y. Su is supported by the National Natural Science Foundation of China (Grant No. 12101006), and Key Program of University Natural Science Research Fund of Anhui Province (Grant No. KJ2020A0292).

Z. Liu was partially supported by the NSFC (Grant No. 11701267), and Hunan Natural Science Excellent Youth Fund (Grant No. 2020JJ3029), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan, Grant Nos. CUG2106211, CUGST2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Liu, Z. Semiclassical states to the nonlinear Choquard equation with critical growth. Isr. J. Math. 255, 729–762 (2023). https://doi.org/10.1007/s11856-023-2485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2485-9

Navigation