Skip to main content
Log in

On two families of Funk-type transforms

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider two families of Funk-type transforms that assign to a function on the unit sphere the integrals of that function over spherical sections by planes of fixed dimension. Transforms of the first kind are generated by planes passing through a fixed center outside the sphere. Similar transforms with interior center and with center on the sphere itself we studied in previous publications. Transforms of the second kind, or the parallel slice transforms, correspond to planes that are parallel to a fixed direction. We show that the Funk-type transforms with exterior center express through the parallel slice transforms and the latter are intimately related to the Radon–John d-plane transforms on the Euclidean ball. These results allow us to investigate injectivity of our transforms and obtain inversion formulas for them. We also establish connection between the Funk-type transforms of different dimensions with arbitrary center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See [3].

References

  1. Abouelaz, A., Daher, R.: Sur la transformation de Radon de la sphère \(S^d\). Bull. Soc. Math. France 121, 353–382 (1993)

    Article  MathSciNet  Google Scholar 

  2. Agranovsky, M., Rubin, B.: Non-geodesic spherical Funk transforms with one and two centers. arXiv:1904.11457 [math.FA] (2019)

  3. Agranovsky, M.: Non-central Funk-Radon transforms: single and multiple. J. Funct. Anal. 279(8), 1–41 (2020)

    Article  MathSciNet  Google Scholar 

  4. Funk, P.G.: Über Flächen mit lauter geschlossenen geodätischen Linien”. Georg-August-Universität Göttingen, Thesis (1911)

  5. Funk, P.G.: Über Flächen mit lauter geschlossenen geodätschen Linen. Math. Ann. 74, 278–300 (1913)

    Article  MathSciNet  Google Scholar 

  6. Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  7. Gelfand, I.M., Gindikin, S.G., Graev, M.I.: Selected Topics in Integral Geometry, Translations of Mathematical Monographs. AMS, Providence (2003)

    Book  Google Scholar 

  8. Gindikin, S., Reeds, J., Shepp, L.: Spherical tomography and spherical integral geometry. In: Tomography, Impedance Imaging, and Integral Geometry (South Hadley, MA, 1993). Lectures in Applied Mathematics, vol. 30, pp. 83–92. American Mathematical Society, Providence (1994)

  9. Helgason, S.: The totally geodesic Radon transform on constant curvature spaces. Contemp. Math. 113, 141–149 (1990)

    Article  MathSciNet  Google Scholar 

  10. Helgason, S.: Integral geometry and Radon transform. Springer, New York (2011)

    Book  Google Scholar 

  11. Hielscher, R., Quellmalz, M.: Reconstructing a function on the sphere from its means along vertical slices. Inverse Probl. Imaging 10(3), 711–739 (2016)

    Article  MathSciNet  Google Scholar 

  12. Kazantsev, S.G.: Funk–Minkowski transform and spherical convolution of Hilbert type in reconstructing functions on the sphere. Sib. Electron. Math. Rep. 15, 1630–1650 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Kuchment, P.: The Radon transform and medical imaging. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 85, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2014)

  14. Markoe, A.: Analytic Tomography. Encyclopedia of Mathematics and Its Applications, vol. 106. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  15. Minkowski, H.: Über die Körper konstanter Breite. Mat. Sbornik 25, 505–508 (1904). (bf in Russian)

    Google Scholar 

  16. Minkowski, H.: German translation in Gesammelte Abhandlungen, vol. 2, pp. 277–279. Bd. Teubner, Leipzig (1911)

    Google Scholar 

  17. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

    Book  Google Scholar 

  18. Palamodov, V.P.: Reconstructive Integral Geometry. Monographs in Mathematics, vol. 98. Birkhäuser Verlag, Basel (2004)

    Book  Google Scholar 

  19. Palamodov, V.P.: Reconstruction from Integral Data. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  20. Quellmalz, M.: A generalization of the Funk–Radon transform. Inverse Problems 33(3), 035016 (2017)

    Article  MathSciNet  Google Scholar 

  21. Quellmalz, M.: The Funk–Radon transform for hyperplane sections through a common point. arXiv:1810.08105 (2018)

  22. Rubin, B.: Inversion formulas for the spherical Radon transform and the generalized cosine transform. Adv. Appl. Math. 29, 471–497 (2002)

    Article  MathSciNet  Google Scholar 

  23. Rubin, B.: Reconstruction of functions from their integrals over \(k\)-dimensional planes. Isr. J. Math. 141, 93–117 (2004)

    Article  Google Scholar 

  24. Rubin, B.: On the Funk–Radon–Helgason inversion method in integral geometry. Contemp. Math. 599, 175–198 (2013)

    Article  MathSciNet  Google Scholar 

  25. Rubin, B.: Introduction to Radon Transforms: With Elements of Fractional Calculus and Harmonic Analysis. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  26. Rubin, B.: Reconstruction of functions on the sphere from their integrals over hyperplane sections. Anal. Math. Phys. (2019). https://doi.org/10.1007/s13324-019-00290-1

    Article  MathSciNet  MATH  Google Scholar 

  27. Rubin, B.: The vertical slice transform in spherical tomography. arXiv:1807.07689 (2018)

  28. Rudin, W.: Function Theory in the Unit Ball of \({\mathbb{C}}^{n}\). Springer, New York (1980)

    Book  Google Scholar 

  29. Salman, Y.: An inversion formula for the spherical transform in \(S^2\) for a special family of circles of integration. Anal. Math. Phys. 6(1), 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  30. Salman, Y.: Recovering functions defined on the unit sphere by integration on a special family of sub-spheres. Anal. Math. Phys. 7(2), 165–185 (2017)

    Article  MathSciNet  Google Scholar 

  31. Stoll, M.: Harmonic and subharmonic function theory on the hyperbolic ball. In: LMS Lecture Notes in Mathematics, vol. 155. Cambridge University Press (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rubin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agranovsky, M., Rubin, B. On two families of Funk-type transforms. Anal.Math.Phys. 10, 44 (2020). https://doi.org/10.1007/s13324-020-00388-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00388-x

Keywords

Mathematics Subject Classification

Navigation