Skip to main content

Non-geodesic Spherical Funk Transforms with One and Two Centers

  • Chapter
  • First Online:
Operator Algebras, Toeplitz Operators and Related Topics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 279))

Abstract

We study non-geodesic Funk-type transforms on the unit sphere 𝕊n in ℝn+1 associated with cross-sections of 𝕊n by k-dimensional planes passing through an arbitrary fixed point inside the sphere. The main results include injectivity conditions for these transforms, inversion formulas, and connection with geodesic Funk transforms. We also show that, unlike the case of planes through a single common center, the integrals over spherical sections by planes through two distinct centers provide the corresponding reconstruction problem a unique solution.

Dedicated to Professor Nikolai Vasilevski on the occasion of his 70th anniversary

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Beardon The Geometry of Discrete Groups, Graduate Texts in Mathematics, Springer-Verlag, New York Inc., 1983.

    Google Scholar 

  2. P.G. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien, Thesis, Georg-August-Universität Göttingen, 1911.

    MATH  Google Scholar 

  3. P.G. Funk, Über Flächen mit lauter geschlossenen geodätschen Linen. Math. Ann.,74 (1913), 278–300.

    Article  MathSciNet  Google Scholar 

  4. R.J. Gardner, Geometric Tomography (second edition). Cambridge University Press, New York, 2006.

    Book  Google Scholar 

  5. F.W. Gehring, G.J. Martin, B.P. Palka, An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings, AMS, Providence, Rhode Island, 2017.

    Google Scholar 

  6. I.M. Gelfand, S.G. Gindikin, M.I. Graev. Selected Topics in Integral Geometry, Translations of Mathematical Monographs, AMS, Providence, Rhode Island, 2003.

    Google Scholar 

  7. S. Gindikin, J. Reeds, L. Shepp, Spherical tomography and spherical integral geometry. In Tomography, impedance imaging, and integral geometry (South Hadley, MA, 1993), 83–92, Lectures in Appl. Math., 30, Amer. Math. Soc., Providence, RI (1994).

    Google Scholar 

  8. S. Helgason, The totally geodesic Radon transform on constant curvature spaces. Contemp. Math., 113 (1990), 141–149.

    Article  MathSciNet  Google Scholar 

  9. S. Helgason, Integral geometry and Radon transform. Springer, New York-Dordrecht-Heidelberg-London, 2011.

    Book  Google Scholar 

  10. H. Minkowski, Über die Körper konstanter Breite [in Russian]. Mat. Sbornik. 25 (1904), 505–508; German translation in Gesammelte Abhandlungen 2, Bd. (Teubner, Leipzig, (1911), 277–279.

    Google Scholar 

  11. R.J. Muirhead, Aspects of multivariate statistical theory, John Wiley & Sons. Inc., New York, 1982.

    Book  Google Scholar 

  12. G.D. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104.

    Article  MathSciNet  Google Scholar 

  13. V. Palamodov. Reconstructive Integral Geometry. Monographs in Mathematics, 98. Birkhäuser Verlag, Basel, 2004.

    Google Scholar 

  14. V.P. Palamodov, Reconstruction from Integral Data. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2016.

    Book  Google Scholar 

  15. M. Quellmalz, A generalization of the Funk-Radon transform. Inverse Problems 33, no. 3, 035016, 26 pp. (2017).

    Google Scholar 

  16. M. Quellmalz, The Funk-Radon transform for hyperplane sections through a common point, Preprint, arXiv:1810.08105 (2018).

    Google Scholar 

  17. B. Rubin, Generalized Minkowski-Funk transforms and small denominators on the sphere. Fractional Calculus and Applied Analysis (2) 3 (2000), 177–203.

    Google Scholar 

  18. B. Rubin, Inversion formulas for the spherical Radon transform and the generalized cosine transform. Advances in Appl. Math., 29 (2002), 471–497.

    Article  MathSciNet  Google Scholar 

  19. B. Rubin, On the Funk-Radon-Helgason inversion method in integral geometry. Contemp. Math., 599 (2013), 175–198.

    Article  MathSciNet  Google Scholar 

  20. B. Rubin, Introduction to Radon transforms: With elements of fractional calculus and harmonic analysis (Encyclopedia of Mathematics and its Applications), Cambridge University Press, 2015.

    Google Scholar 

  21. B. Rubin, Reconstruction of functions on the sphere from their integrals over hyperplane sections, Analysis and Mathematical Physics, https://doi.org/10.1007/s13324-019-00290-1, 2019.

  22. W. Rudin, Function Theory in the Unit Ball ofCn, Springer, 1980.

    Book  Google Scholar 

  23. Y. Salman, An inversion formula for the spherical transform in S 2 for a special family of circles of integration. Anal. Math. Phys., 6, no. 1 (2016), 43–58.

    Article  MathSciNet  Google Scholar 

  24. Y. Salman, Recovering functions defined on the unit sphere by integration on a special family of sub-spheres. Anal. Math. Phys. 7, no. 2 (2017), 165–185.

    Article  MathSciNet  Google Scholar 

  25. M. Stoll, Harmonic and subharmonic function theory on the hyperbolic ball. LMS Lecture Notes in Mathematics, vol. 155, Cambridge University Press, 2016.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the referee for his valuable remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Agranovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agranovsky, M., Rubin, B. (2020). Non-geodesic Spherical Funk Transforms with One and Two Centers. In: Bauer, W., Duduchava, R., Grudsky, S., Kaashoek, M. (eds) Operator Algebras, Toeplitz Operators and Related Topics. Operator Theory: Advances and Applications, vol 279. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-44651-2_7

Download citation

Publish with us

Policies and ethics