Skip to main content
Log in

Self-adjoint realisations of the Dirac-Coulomb Hamiltonian for heavy nuclei

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive a classification of the self-adjoint extensions of the three-dimensional Dirac-Coulomb operator in the critical regime of the Coulomb coupling. Our approach is solely based upon the Kreĭn-Višik-Birman extension scheme, or also on Grubb’s universal classification theory, as opposite to previous works within the standard von Neumann framework. This let the boundary condition of self-adjointness emerge, neatly and intrinsically, as a multiplicative constraint between regular and singular part of the functions in the domain of the extension, the multiplicative constant giving also immediate information on the invertibility property and on the resolvent and spectral gap of the extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact, with a slightly more elaborate argument we can better estimate the reminder in (2.13) as a \(O(r^{1-B})\) term; however, this is not needed in the analysis that follows.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, vol. 55 of National Bureau of Standards Applied Mathematics Series, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC (1964)

  2. Alonso, A., Simon, B.: The Birman-Kreĭn-Vishik theory of selfadjoint extensions of semibounded operators. J. Operator Theory 4, 251–270 (1980)

    MathSciNet  MATH  Google Scholar 

  3. Arai, M.: On essential selfadjointness, distinguished selfadjoint extension and essential spectrum of Dirac operators with matrix valued potentials. Publ. Res. Inst. Math. Sci. 19, 33–57 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arai, M., Yamada, O.: Essential selfadjointness and invariance of the essential spectrum for Dirac operators. Publ. Res. Inst. Math. Sci. 18, 973–985 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arrizabalaga, N.: Distinguished self-adjoint extensions of Dirac operators via Hardy-Dirac inequalities. J. Math. Phys. 52, 092301 (2011). 14

    Article  MathSciNet  MATH  Google Scholar 

  6. Arrizabalaga, N., Duoandikoetxea, J., Vega, L.: Self-adjoint extensions of Dirac operators with Coulomb type singularity. J. Math. Phys. 54, 041504 (2013). 20

    Article  MathSciNet  MATH  Google Scholar 

  7. Berthier, A., Georgescu, V.: On the point spectrum of Dirac operators. J. Funct. Anal. 71, 309–338 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bruneau, L., Dereziński, J., Georgescu, V.: Homogeneous Schrödinger operators on half-line. Ann. Henri Poincaré 12, 547–590 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burnap, C., Brysk, H., Zweifel, P.F.: Dirac Hamiltonian for strong Coulomb fields. Il Nuovo Cimento B (1971-1996) 64, 407–419 (1981)

    Article  MathSciNet  Google Scholar 

  10. Chernoff, P.R.: Schrödinger and Dirac operators with singular potentials and hyperbolic equations. Pac. J. Math. 72, 361–382 (1977)

    Article  MATH  Google Scholar 

  11. Esteban, M.J., Lewin, M., Séré, E.: Domains for Dirac-Coulomb min–max levels (2017). arXiv:1702.04976

  12. Esteban, M.J., Loss, M.: Self-adjointness for Dirac operators via Hardy-Dirac inequalities. J. Math. Phys. 48, 112107 (2007). 8

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans, W.D.: On the unique self-adjoint extension of the Dirac operator and the existence of the Green matrix. Proc. Lond. Math. Soc. (3) 20, 537–557 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fall, M.M., Felli, V.: Sharp essential self-adjointness of relativistic Schrödinger operators with a singular potential. J. Funct. Anal. 267, 1851–1877 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gallone, M.: Self-adjoint extensions of Dirac operator with Coulomb potential. In: Dell’Antonio, G., Michelangeli, A. (eds.) Advances in Quantum Mechanics, INdAM-Springer series, vol. 18, pp. 169–185. Springer, Berlin (2017)

    Google Scholar 

  16. Gallone, M., Michelangeli, A., Ottolini, A.: Kreĭn-Višik-Birman self-adjoint extension theory revisited, SISSA preprint 25/2017/MATE (2017)

  17. Georgescu, V., Măntoiu, M.: On the spectral theory of singular Dirac type Hamiltonians. J. Operator Theory 46, 289–321 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Grubb, G.: A characterization of the non-local boundary value problems associated with an elliptic operator. Ann. Scuola Norm. Sup. Pisa (3) 22, 425–513 (1968)

    MathSciNet  MATH  Google Scholar 

  19. Grubb, G.: Distributions and Operators. Graduate Texts in Mathematics, vol. 252. Springer, New York (2009)

    Google Scholar 

  20. Gustafson, K.E., Rejto, P.A.: Some essentially self-adjoint Dirac operators with spherically symmetric potentials. Israel J. Math. 14, 63–75 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hogreve, H.: The overcritical Dirac–Coulomb operator. J. Phys. A 46, 025301 (2013). 22

    Article  MathSciNet  MATH  Google Scholar 

  22. Kalf, H., Schmincke, U.-W., Walter, J., Wüst, R.: On the Spectral Theory of Schrödinger and Dirac Operators with Strongly Singular Potentials. Lecture Notes in Mathematics, vol. 448, pp. 182–226. Springer, Berlin (1975)

    MATH  Google Scholar 

  23. Kato, T.: Holomorphic families of Dirac operators. Math. Z. 183, 399–406 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klaus, M., Wüst, R.: Characterization and uniqueness of distinguished selfadjoint extensions of Dirac operators. Comm. Math. Phys. 64, 171–176 (1978/79)

  25. Landgren, J.J., Rejto, P.A.: An application of the maximum principle to the study of essential selfadjointness of Dirac operators. I. J. Math. Phys. 20, 2204–2211 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Landgren, J.J., Rejto, P.A.: On a theorem of Jörgens and Chernoff concerning essential selfadjointness of Dirac operators. J. Reine Angew. Math. 322, 1–14 (1981)

    MathSciNet  MATH  Google Scholar 

  27. Landgren, J.J., Rejto, P.A., Klaus, M.: An application of the maximum principle to the study of essential selfadjointness of Dirac operators II. J. Math. Phys. 21, 1210–1217 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Le Yaouanc, A., Oliver, L., Raynal, J.-C.: The Hamiltonian \((p^2+m^2)^{1/2}-\alpha /r\) near the critical value \(\alpha _c=2/\pi \). J. Math. Phys. 38, 3997–4012 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nenciu, G.: Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms. Commun. Math. Phys. 48, 235–247 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1975)

    MATH  Google Scholar 

  31. Rejto, P.A.: Some essentially self-adjoint one-electron Dirac operators. (With appendix.). Israel J. Math. 9, 144–171 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schmincke, U.-W.: Distinguished selfadjoint extensions of Dirac operators. Math. Z. 129, 335–349 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schmincke, U.-W.: Essential selfadjointness of Dirac operators with a strongly singular potential. Math. Z. 126, 71–81 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thaller, B.: The Dirac Equation, Texts and Monographs in Physics. Springer, Berlin (1992)

    Google Scholar 

  35. Voronov, B.L., Gitman, D.M., Tyutin, I.V.: The Dirac Hamiltonian with a superstrong Coulomb field. Teoret. Mat. Fiz. 150, 41–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover Publications Inc, New York (1987). (Reprint of the 1976 edition)

    MATH  Google Scholar 

  37. Weidmann, J.: Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen. Math. Z. 119, 349–373 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  38. Weidmann, J.: Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathematics. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  39. Wüst, R.: Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials. Math. Z. 141, 93–98 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wüst, R.: Dirac operations with strongly singular potentials. Distinguished self-adjoint extensions constructed with a spectral gap theorem and cut-off potentials. Math. Z. 152, 259–271 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xia, J.: On the contribution of the Coulomb singularity of arbitrary charge to the Dirac Hamiltonian. Trans. Am. Math. Soc. 351, 1989–2023 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to Naiara Arrizabalaga, Gianfausto Dell’Antonio, Marko Erceg, Diego Noja, and Giulio Ruzza for many instructive and inspirational discussions on the subject of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Michelangeli.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

This work was partially supported by the 2014-2017 MIUR-FIR grant “Cond-Math: Condensed Matter and Mathematical Physics” code RBFR13WAET.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallone, M., Michelangeli, A. Self-adjoint realisations of the Dirac-Coulomb Hamiltonian for heavy nuclei. Anal.Math.Phys. 9, 585–616 (2019). https://doi.org/10.1007/s13324-018-0219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-018-0219-7

Keywords

Mathematics Subject Classification

Navigation