Skip to main content
Log in

On Evgrafov–Fedoryuk’s theory and quadratic differentials

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The purpose of this note is to recall the theory of the (homogenized) spectral problem for Schrödinger equation with a polynomial potential and its relation with quadratic differentials. We derive from results of this theory that the accumulation rays of the eigenvalues of the latter problem are in \(1-1\)-correspondence with the short geodesics of the singular planar metrics induced by the corresponding quadratic differential. We prove that for a polynomial potential of degree \(d,\) the number of such accumulation rays can be any positive integer between \((d-1)\) and \(d \atopwithdelims ()2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alexandersson, P., Gabrielov, A.: On eigenvalues of the Schrödinger operator with a complex-valued polynomial potential. CMFT 12(1), 119–144 (2012)

    MATH  MathSciNet  Google Scholar 

  2. Baryshnikov, Yu.: On Stokes sets. In: New developments in singularity theory (Cambridge, 2000), pp. 65–86. NATO Sci. Ser. II Math. Phys. Chem., vol. 21. Kluwer, Dordrecht (2001)

  3. Birkhoff, G.D.: Quantum mechanics and asymptotic series. Bull. Am. Math. Soc. 32, 681–700 (1933)

    Article  MathSciNet  Google Scholar 

  4. Delabaere, E., Pham, F.: Unfolding the quartic oscillator. Ann. Phys. 261, 180–218 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eremenko, A., Gabrielov, A.: Analytic continuation of eigenvalues of a quartic oscillator. Commun. Math. Phys. 287(2), 431–457 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eremenko, A., Gabrielov, A.: Singular perturbation of polynomial potentials in the complex domain with applications to PT-symmetric families. Mosc. Math. J. 11(3), 473–503 (2011)

    MATH  MathSciNet  Google Scholar 

  7. Evgrafov, M., Fedoryuk, M.: Asymptotic behavior of solutions of the equation \(w^{\prime \prime }(z)-p(z,\,\lambda )w(z)=0\) as \(\lambda \rightarrow \infty \) in the complex \(z\)-plane (Russian). Usp. Math. Nauk 21(1), 3–50 (1966)

    MATH  Google Scholar 

  8. Fedoruyk, M.: Asymptotic analysis. Linear Ordinary Differential Equations. Springer, Berlin (1993)

    Google Scholar 

  9. Fedoryuk, M.: Asymptotics of the discrete spectrum of the operator \(w^{\prime \prime }(x)-\lambda ^2w(x)\). Math. Sb. 68(1), 81–109 (1965)

    Google Scholar 

  10. Fedoryuk, M.: One-dimensional scattering in quasiclassical approximation. Diff. Uravn. 1(5), 483–495 (1965)

    Google Scholar 

  11. Fedoryuk, M.: Topology of Stokes lines for the 2nd order equations. Izv. AS USSR 29, 645–656 (1965)

    Google Scholar 

  12. Fedoryuk, M.: Analytic spectral problems. Diff. Uravn. 26(2), 258–267 (1990)

    MathSciNet  Google Scholar 

  13. Hsieh, P.S., Sibuya, Y.: On the asymptotic integration of second order linear ordinary differential equation with polynomial coefficient. J. Math. Anal. Appl. 16, 84–103 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jenkins, J.A.: Univalent functions and conformal mapping. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie. Springer, Berlin (1958)

    Google Scholar 

  15. Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn. Springer, Berlin (1994)

    Google Scholar 

  16. Nevanlinna, R.: Über Riemannsche Flächen mit endlich vielen Windungspunkten. Acta Math. 58, 295–373 (1932)

    Article  MathSciNet  Google Scholar 

  17. Shapere, A.D., Vafa, C.: BPS structure of Argyres–Douglas superconformal theories. hep-th/9910172

  18. Shin, K. C.: Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT -Symmetry, Symmetry, Integrability and Geometry: Methods and Applications, SIGMA 6, 015 (2010)

  19. Sibuya, Y.: Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient, Noth-Holland Math. Studies, vol. 18. North-Holland, Amsterdam (1974)

  20. Sibuya, Y.: Subdominant solutions of the differential equation\(y^{\prime \prime }-\lambda ^2(x-a_1)(x-a_2)..(x-a_m)y=0\). Acta Math. 119(1), 235–272 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  21. Strebel, K.: Quadratic differentials. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1984)

    Google Scholar 

  22. Wasow, W.: Linear turning point theory. Applied Mathematical Sciences. Springer, New York (1985)

    Google Scholar 

Download references

Acknowledgments

I am grateful to Professors Y. Baryshnikov, A. Zorich and my former Ph.D. student T. Holst for discussions around this topic. I want to thank the anonymous referee for constructive criticism which helped to improve the quality of the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Shapiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, B. On Evgrafov–Fedoryuk’s theory and quadratic differentials. Anal.Math.Phys. 5, 171–181 (2015). https://doi.org/10.1007/s13324-014-0092-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-014-0092-y

Keywords

Mathematics Subject Classification

Navigation