Skip to main content
Log in

Does Sample Size, Sampling Strategy, or Handling of Concentrations Below the Lower Limit of Quantification Matter When Externally Evaluating Population Pharmacokinetic Models?

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Precision dosing requires selecting the appropriate population pharmacokinetic model, which can be assessed through external evaluations (EEs). The lack of understanding of how different study design factors influence EE study outcomes makes it challenging to select the most suitable model for clinical use. This study aimed to evaluate the impact of sample size, sampling strategy, and handling of concentrations below the lower limit of quantification (BLQ) on the outcomes of EE for four population pharmacokinetic models using vancomycin and tobramycin as examples.

Methods

Three virtual patient populations undergoing vancomycin or tobramycin therapy were simulated with varying sample size and sampling scenarios. The three approaches used to handle BLQ data were to (1) discard them, (2) impute them as LLOQ/2, or (3) use a likelihood-based approach. EEs were performed with NONMEM and R.

Results

Sample size did not have an important impact on the EE results for a given scenario. Increasing the number of samples per patient did not improve predictive performance for two out of the three evaluated models. Evaluating a model developed with rich sampling did not result in better performance than those developed with regular therapeutic drug monitoring. A likelihood-based method to handle BLQ samples impacted the outcomes of the EE with lower bias for predicted troughs.

Conclusions

This study suggests that a large sample size may not be necessary for an EE study, and models selected based on TDM may be more generalizable. The study highlights the need for guidelines for EE of population pharmacokinetic models for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Marsot A. Pharmacokinetic variability in pediatrics and intensive care: toward a personalized dosing approach. J Pharm Pharm Sci. 2018;21(1):354–62.

    Article  CAS  PubMed  Google Scholar 

  2. Powell JR, Cook J, Wang Y, Peck R, Weiner D. Drug dosing recommendations for all patients: a roadmap for change. Clin Pharmacol Ther. 2021;109(1):65–72.

    Article  PubMed  Google Scholar 

  3. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacomet Syst Pharmacol. 2013;2(4): e38.

    Article  CAS  Google Scholar 

  4. Kantasiripitak W, Van Daele R, Gijsen M, Ferrante M, Spriet I, Dreesen E. Software tools for model-informed precision dosing: how well do they satisfy the needs? Front Pharmacol. 2020;11:620.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aljutayli A, Thirion DJG, Bonnefois G, Nekka F. Pharmacokinetic equations versus Bayesian guided vancomycin monitoring: pharmacokinetic model and model-informed precision dosing trial simulations. Clin Transl Sci. 2022;15(4):942–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gu JQ, Guo YP, Jiao Z, Ding JJ, Li GF. How to handle delayed or missed doses: a population pharmacokinetic perspective. Eur J Drug Metab Pharmacokinet. 2020;45(2):163–72.

    Article  CAS  PubMed  Google Scholar 

  7. Patanwala AE, Spremo D, Jeon M, Thoma Y, Alffenaa JWC, Stocker S. Discrepancies between Bayesian vancomycin models can affect clinical decisions in the critically ill. Crit Care Res Pract. 2022;2022:7011376.

    PubMed  PubMed Central  Google Scholar 

  8. El Hassani M, Marsot A. External evaluation of population pharmacokinetic models for precision dosing: current state and knowledge gaps. Clin Pharmacokinet. 2023;62(4):533–40.

    Article  PubMed  Google Scholar 

  9. Cheng Y, Wang C-Y, Li Z-R, Pan Y, Liu M-B, Jiao Z. Can population pharmacokinetics of antibiotics be extrapolated? Implications of external evaluations. Clin Pharmacokinet. 2021;60(1):53–68.

    Article  CAS  PubMed  Google Scholar 

  10. Kim YK, Lee JH, Jang HJ, Zang DY, Lee DH. Predicting antibiotic effect of vancomycin using pharmacokinetic/pharmacodynamic modeling and simulation: dense sampling versus sparse sampling. Antibiotics (Basel). 2022;11(6):743.

    Article  CAS  PubMed  Google Scholar 

  11. Aarons L, Ogungbenro K. Optimal design of pharmacokinetic studies. Basic Clin Pharmacol Toxicol. 2010;106(3):250–5.

    Article  CAS  PubMed  Google Scholar 

  12. Beal SL. Sample size determination for confidence intervals on the population mean and on the difference between two population means. Biometrics. 1989;45(3):969–77.

    Article  CAS  PubMed  Google Scholar 

  13. Grieve AP. Confidence intervals and sample sizes. Biometrics. 1991;47(4):1597–602.

    Article  CAS  PubMed  Google Scholar 

  14. Ogungbenro K, Aarons L. How many subjects are necessary for population pharmacokinetic experiments? Confidence interval approach. Eur J Clin Pharmacol. 2008;64(7):705–13.

    Article  PubMed  Google Scholar 

  15. Chan Kwong AHXP, Calvier EAM, Fabre D, Gattacceca F, Khier S. Prior information for population pharmacokinetic and pharmacokinetic/pharmacodynamic analysis: overview and guidance with a focus on the NONMEM PRIOR subroutine. J Pharmacokinet Pharmacodyn. 2020;47(5):431–46.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Keizer RJ, Jansen RS, Rosing H, Thijssen B, Beijnen JH, Schellens JH, et al. Incorporation of concentration data below the limit of quantification in population pharmacokinetic analyses. Pharmacol Res Perspect. 2015;3(2): e00131.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huang S, Ding Q, Yang N, Sun Z, Cheng Q, Liu W, et al. External evaluation of published population pharmacokinetic models of posaconazole. Front Pharmacol. 2022;13:1005348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Konecki C, Feliu C, Cazaubon Y, Giusti D, Tonye-Libyh M, Brixi H, et al. External evaluation of population pharmacokinetic models and bayes-based dosing of infliximab. Pharmaceutics. 2021;13(8):1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.

    Article  CAS  PubMed  Google Scholar 

  20. Santacana E, Rodríguez-Alonso L, Padullés A, Guardiola J, Rodríguez-Moranta F, Serra K, et al. External evaluation of population pharmacokinetic models of infliximab in patients with inflammatory bowel disease. Ther Drug Monit. 2018;40(1):120–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hanafin PO, Nation RL, Scheetz MH, Zavascki AP, Sandri AM, Kwa AL, et al. Assessing the predictive performance of population pharmacokinetic models for intravenous polymyxin B in critically ill patients. CPT Pharmacomet Syst Pharmacol. 2021;10(12):1525–37.

    Article  CAS  Google Scholar 

  22. Yang N, Wang J, Xie Y, Ding J, Wu C, Liu J, et al. External evaluation of population pharmacokinetic models to inform precision dosing of meropenem in critically ill patients. Front Pharmacol. 2022;13: 838205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nguyen TH, Comets E, Mentré F. Extension of NPDE for evaluation of nonlinear mixed effect models in presence of data below the quantification limit with applications to HIV dynamic model. J Pharmacokinet Pharmacodyn. 2012;39(5):499–518.

    Article  PubMed  Google Scholar 

  24. Irby DJ, Ibrahim ME, Dauki AM, Badawi MA, Illamola SM, Chen M, et al. Approaches to handling missing or “problematic” pharmacology data: pharmacokinetics. CPT Pharmacomet Syst Pharmacol. 2021;10(4):291–308.

    Article  CAS  Google Scholar 

  25. Ahn JE, Karlsson MO, Dunne A, Ludden TM. Likelihood based approaches to handling data below the quantification limit using NONMEM VI. J Pharmacokinet Pharmacodyn. 2008;35(4):401–21.

    Article  PubMed  Google Scholar 

  26. Bergstrand M, Karlsson MO. Handling data below the limit of quantification in mixed effect models. AAPS J. 2009;11(2):371–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mehrotra N, Tang L, Phelps SJ, Meibohm B. Evaluation of vancomycin dosing regimens in preterm and term neonates using Monte Carlo simulations. Pharmacotherapy. 2012;32(5):408–19.

    Article  CAS  PubMed  Google Scholar 

  28. Dong M, Rodriguez AV, Blankenship CA, McPhail G, Vinks AA, Hunter LL. Pharmacokinetic modelling to predict risk of ototoxicity with intravenous tobramycin treatment in cystic fibrosis. J Antimicrob Chemother. 2021;76(11):2923–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. El Hassani M, Simard C, Pilote S, Cloutier I, Soufsaf S, Marsot A. Consideration of height-based tobramycin dosing regimens for the treatment of adult cystic fibrosis pulmonary exacerbations. Br J Clin Pharmacol. 2021;88(5):2246–55.

    Article  PubMed  Google Scholar 

  30. Smit C, Wasmann RE, Wiezer MJ, van Dongen HPA, Mouton JW, Brüggemann RJM, et al. Tobramycin clearance is best described by renal function estimates in obese and non-obese individuals: results of a prospective rich sampling pharmacokinetic study. Pharm Res. 2019;36(8):112.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Koloskoff K, Thirion DJG, Matouk E, Marsot A. New recommendations of a height-based dosing regimen of tobramycin for cystic fibrosis in adults: a population pharmacokinetic analysis. Ther Drug Monit. 2022. https://doi.org/10.1097/FTD.0000000000001021.

    Article  Google Scholar 

  32. Alghanem S, Paterson I, Touw DJ, Thomson AH. Influence of multiple courses of therapy on aminoglycoside clearance in adult patients with cystic fibrosis. J Antimicrob Chemother. 2013;68(6):1338–47.

    Article  CAS  PubMed  Google Scholar 

  33. Teutonico D, Musuamba F, Maas HJ, Facius A, Yang S, Danhof M, et al. Generating virtual patients by multivariate and discrete re-sampling techniques. Pharm Res. 2015;32(10):3228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Owen JS, Fiedler-Kelly J (2014) Introduction to population pharmacokinetic/pharmacodynamic analysis with nonlinear mixed effects models. John Wiley & Sons, Hoboken, NJ

  35. Germovsek E, Osborne L, Gunaratnam F, Lounis SA, Busquets FB, Standing JF, et al. Development and external evaluation of a population pharmacokinetic model for continuous and intermittent administration of vancomycin in neonates and infants using prospectively collected data. J Antimicrob Chemother. 2019;74(4):1003–11.

    Article  CAS  PubMed  Google Scholar 

  36. Vancocin (vancomycin hydrochloride) [package insert]. Baudette, MN: ANI Pharmaceuticals; 2017

  37. Aljutayli A, El-Haffaf I, Marsot A, Nekka F. An update on population pharmacokinetic analyses of vancomycin, part II: in pediatric patients. Clin Pharmacokinet. 2022;61(1):47–70.

    Article  CAS  PubMed  Google Scholar 

  38. Smit C, Wasmann RE, Goulooze SC, Hazebroek EJ, Van Dongen EPA, Burgers DMT, et al. A prospective clinical study characterizing the influence of morbid obesity on the pharmacokinetics of gentamicin: towards individualized dosing in obese patients. Clin Pharmacokinet. 2019;58(10):1333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crass RL, Pai MP. Optimizing estimated glomerular filtration rate to support adult to pediatric pharmacokinetic bridging studies in patients with cystic fibrosis. Clin Pharmacokinet. 2019;58(10):1323–32.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Frymoyer A, Hersh AL, El-Komy MH, Gaskari S, Su F, Drover DR, et al. Association between vancomycin trough concentration and area under the concentration-time curve in neonates. Antimicrob Agents Chemother. 2014;58(11):6454–61.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bauer RJ. NONMEM tutorial part II: estimation methods and advanced examples. CPT Pharmacomet Syst Pharmacol. 2019;8(8):538–56.

    Article  CAS  Google Scholar 

  42. Maitre PO, Ausems ME, Vozeh S, Stanski DR. Evaluating the accuracy of using population pharmacokinetic data to predict plasma concentrations of alfentanil. Anesthesiology. 1988;68(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  43. Hara M, Masui K, Eleveld DJ, Struys MMRF, Uchida O. Predictive performance of eleven pharmacokinetic models for propofol infusion in children for long-duration anaesthesia. Br J Anaesth. 2017;118(3):415–23.

    Article  CAS  PubMed  Google Scholar 

  44. Miyabe-Nishiwaki T, Masui K, Kaneko A, Nishiwaki K, Nishio T, Kanazawa H. Evaluation of the predictive performance of a pharmacokinetic model for propofol in Japanese macaques (Macaca fuscata fuscata). J Vet Pharmacol Ther. 2013;36(2):169–73.

    Article  CAS  PubMed  Google Scholar 

  45. Comets E, Brendel K, Mentré F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed. 2008;90(2):154–66.

    Article  PubMed  Google Scholar 

  46. Hughes JH, Tong DMH, Faldasz JD, Frymoyer A, Keizer RJ. Evaluation of neonatal and paediatric vancomycin pharmacokinetic models and the impact of maturation and serum creatinine covariates in a large multicentre data set. Clin Pharmacokinet. 2023;62(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  47. Heus A, Uster DW, Grootaert V, Vermeulen N, Somers A, In’t Veld DH, et al. Model-informed precision dosing of vancomycin via continuous infusion: a clinical fit-for-purpose evaluation of published PK models. Int J Antimicrob Agents. 2022;59(5): 106579.

    Article  CAS  PubMed  Google Scholar 

  48. Colin PJ, Allegaert K, Thomson AH, Touw DJ, Dolton M, de Hoog M, et al. Vancomycin pharmacokinetics throughout life: results from a pooled population analysis and evaluation of current dosing recommendations. Clin Pharmacokinet. 2019;58(6):767–80.

    Article  CAS  PubMed  Google Scholar 

  49. Cunio CB, Uster DW, Carland JE, Buscher H, Liu Z, Brett J et al. Towards precision dosing of vancomycin in critically ill patients: an evaluation of the predictive performance of pharmacometric models in ICU patients. Clin Microbiol Infect. 2021;27(5):783.e7–783.e14

  50. Nguyen TH, Mouksassi MS, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacomet Syst Pharmacol. 2017;6(2):87–109.

    Article  CAS  Google Scholar 

  51. Bensken WP, Pieracci FM, Ho VP. Basic introduction to statistics in medicine, part 1: describing data. Surg Infect (Larchmt). 2021;22(6):590–6.

    Article  PubMed  Google Scholar 

  52. Hsu LF. A survey of population pharmacokinetic reports submitted to the USFDA: an analysis of common issues in NDA and BLA from 2012 to 2021. Clin Pharmacokinet. 2022;61(12):1697–703.

    Article  PubMed  Google Scholar 

  53. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi El Hassani.

Ethics declarations

Author Contributions

ME and AM designed the research. ME performed research and analyzed data. ME wrote the manuscript. UL and AM reviewed the manuscript.

Funding

This work was supported by the Fonds de Recherche du Québec-Santé (FRQS); the Réseau Québécois de Recherche sur les Médicaments and Canada Foundation for Innovation.

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

Code Availability

Available on request from the corresponding author.

Conflict of interest

Mehdi El Hassani, Uwe Liebchen and Amélie Marsot declare no conflicts of interest.

Ethical Approval

No ethics approval was necessary given that no clinical trial data were used for the simulations. We relied on published data and models to perform simulations.

Consent to Participate

Not applicable as this was a simulation study.

Consent for Publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6153 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hassani, M., Liebchen, U. & Marsot, A. Does Sample Size, Sampling Strategy, or Handling of Concentrations Below the Lower Limit of Quantification Matter When Externally Evaluating Population Pharmacokinetic Models?. Eur J Drug Metab Pharmacokinet (2024). https://doi.org/10.1007/s13318-024-00897-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13318-024-00897-1

Navigation