Skip to main content

Advertisement

Log in

Development and Validation of a New LC–MS/MS Analytical Method for Direct-Acting Antivirals and Its Application in End-Stage Renal Disease Patients

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

The effectiveness of direct-acting antivirals (DAAs) is not well established in end-stage renal disease (ESRD) patients. Assessment of the plasma concentrations may support understanding of their therapeutic outcomes in this population. The aim of this study is to develop a direct, yet matrix-effect tolerant, analytical method for determining DAAs in the plasma of ESRD patients while maintaining a moderate cost per sample and with an improved analyte extraction recovery.

Methods

In this study, a liquid chromatography–tandem mass spectrometric (LC–MS/MS) method was developed for the analysis of ombitasvir (OMB), paritaprevir (PRT) and ritonavir (RIT) in plasma. Sample preparation was performed using the liquid–liquid extraction (LLE) method. Isocratic separation was performed using a mixture of methanol and 10 mM ammonium acetate (79:21, v/v) followed by MS/MS detection. The method was validated and applied to determine DAAs in the plasma of ESRD patients (n = 7).

Results

The developed method was linear (r2 > 0.995), accurate (89.4 ± 7.8 to 108.3 ± 3.0) and precise (% CV 0.9–15.0) and showed improved recovery (> 80) over previously published ones in the range 5–250, 30–1,500, 20–1,000 ng/mL for OMB, PRT and RIT, respectively. Relative matrix effect was absent, and the method accurately determined the three DAAs in real-life samples (n = 7).

Conclusions

An efficient analytical method for the determination of DAAs is presented. The method overcomes the potential analytical response fluctuation in ESRD. The developed method show improved extraction recoveries and is suitable for routine application in developing economies where hepatitis C virus is most prevalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kouyoumjian SP, Chemaitelly H, Abu-Raddad LJ. Characterizing hepatitis C virus epidemiology in Egypt: systematic reviews, meta-analyses, and meta-regressions. Sci Rep. 2018;8(1):1661. https://doi.org/10.1038/s41598-017-17936-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soriano V, Vispo E, Poveda E, Labarga P, Martin-Carbonero L, Fernandez-Montero JV, et al. Directly acting antivirals against hepatitis C virus. J Antimicrob Chemother. 2011;66(8):1673–86.

    Article  CAS  Google Scholar 

  3. Pearlman BL, Traub N. Sustained virologic response to antiviral therapy for chronic hepatitis C virus infection: a cure and so much more. Clin Infect Dis. 2011;52(7):889–900. https://doi.org/10.1093/cid/cir076.

    Article  PubMed  Google Scholar 

  4. Fried MW, Hadziyannis SJ, editors. Treatment of chronic hepatitis C infection with peginterferons plus ribavirin. Seminars in liver disease. New York: Thieme Medical Publishers, Inc.; 2004.

    Google Scholar 

  5. Foster GR, Irving WL, Cheung MCM, Walker AJ, Hudson BE, Verma S, et al. Impact of direct acting antiviral therapy in patients with chronic hepatitis C and decompensated cirrhosis. J Hepatol. 2016;64(6):1224–31. https://doi.org/10.1016/j.jhep.2016.01.029.

    Article  CAS  PubMed  Google Scholar 

  6. Schinazi R, Halfon P, Marcellin P, Asselah T. HCV direct-acting antiviral agents: the best interferon-free combinations. Liver Int. 2014;34(s1):69–78. https://doi.org/10.1111/liv.12423.

    Article  CAS  PubMed  Google Scholar 

  7. Gentile I, Buonomo AR, Borgia G. Ombitasvir: a potent pan-genotypic inhibitor of NS5A for the treatment of hepatitis C virus infection. Routledge: Taylor & Francis; 2014.

    Google Scholar 

  8. Deeks ED. Ombitasvir/paritaprevir/ritonavir plus dasabuvir: a review in chronic HCV genotype 1 infection. Drugs. 2015;75(9):1027–38.

    Article  CAS  Google Scholar 

  9. Hézode C, Asselah T, Reddy KR, Hassanein T, Berenguer M, Fleischer-Stepniewska K, et al. Ombitasvir plus paritaprevir plus ritonavir with or without ribavirin in treatment-naive and treatment-experienced patients with genotype 4 chronic hepatitis C virus infection (PEARL-I): a randomised, open-label trial. Lancet. 2015;385(9986):2502–9.

    Article  Google Scholar 

  10. Pockros PJ, Reddy KR, Mantry PS, Cohen E, Bennett M, Sulkowski MS, et al. Efficacy of direct-acting antiviral combination for patients with hepatitis C virus genotype 1 infection and severe renal impairment or end-stage renal disease. Gastroenterology. 2016;150(7):1590–8. https://doi.org/10.1053/j.gastro.2016.02.078.

    Article  CAS  PubMed  Google Scholar 

  11. Smolders EJ, de Kanter CTMM, van Hoek B, Arends JE, Drenth JPH, Burger DM. Pharmacokinetics, efficacy, and safety of hepatitis C virus drugs in patients with liver and/or renal impairment. Drug Saf. 2016;39(7):589–611. https://doi.org/10.1007/s40264-016-0420-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Talavera Pons S, Boyer A, Lamblin G, Chennell P, Châtenet F-T, Nicolas C, et al. Managing drug–drug interactions with new direct-acting antiviral agents in chronic hepatitis C. Br J Clin Pharmacol. 2017;83(2):269–93. https://doi.org/10.1111/bcp.13095.

    Article  CAS  PubMed  Google Scholar 

  13. Khatri A, Menon RM, Marbury TC, Lawitz EJ, Podsadecki TJ, Mullally VM, et al. Pharmacokinetics and safety of co-administered paritaprevir plus ritonavir, ombitasvir, and dasabuvir in hepatic impairment. J Hepatol. 2015;63(4):805–12.

    Article  CAS  Google Scholar 

  14. Kiser JJ, Burton JR Jr, Everson GT. Drug–drug interactions during antiviral therapy for chronic hepatitis C. Nat Rev Gastroenterol Hepatol. 2013;10(10):596.

    Article  CAS  Google Scholar 

  15. Haubrich RH, Little SJ, Currier JS, Forthal DN, Kemper CA, Beall GN, et al. The value of patient-reported adherence to antiretroviral therapy in predicting virologic and immunologic response. AIDS. 1999;13(9):1099–107.

    Article  CAS  Google Scholar 

  16. Forte F, Portier H, Piroth L, Buisson M, Duong M, Grappin M, et al. Value of patient self-report and plasma human immunodeficiency virus protease inhibitor level as markers of adherence to antiretroviral therapy: relationship to virologic response. Clin Infect Dis. 2001;33(3):386–92. https://doi.org/10.1086/321876.

    Article  PubMed  Google Scholar 

  17. Durant J, Clevenbergh P, Garraffo R, Halfon P, Icard S, Del Giudice P, et al. Importance of protease inhibitor plasma levels in HIV-infected patients treated with genotypic-guided therapy: pharmacological data from the Viradapt Study. AIDS. 2000;14(10):1333–9.

    Article  CAS  Google Scholar 

  18. Gross R, Bilker WB, Friedman HM, Strom BL. Effect of adherence to newly initiated antiretroviral therapy on plasma viral load. AIDS. 2001;15(16):2109–17.

    Article  CAS  Google Scholar 

  19. Levey AS, Coresh J, Bolton K, Culleton B, Harvey KS, Ikizler TA, et al. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.

    Google Scholar 

  20. Ariaudo A, Favata F, De Nicolò A, Simiele M, Paglietti L, Boglione L, et al. A UHPLC–MS/MS method for the quantification of direct antiviral agents simeprevir, daclatasvir, ledipasvir, sofosbuvir/GS-331007, dasabuvir, ombitasvir and paritaprevir, together with ritonavir, in human plasma. J Pharm Biomed Anal. 2016;125:369–75. https://doi.org/10.1016/j.jpba.2016.04.031.

    Article  CAS  PubMed  Google Scholar 

  21. Burger D, Hugen P, Reiss P, Gyssens I, Schneider M, Kroon F, et al. Therapeutic drug monitoring of nelfinavir and indinavir in treatment-naive HIV-1-infected individuals. AIDS. 2003;17(8):1157–65.

    Article  CAS  Google Scholar 

  22. Stemer G, Lemmens-Gruber R. Clinical pharmacy activities in chronic kidney disease and end-stage renal disease patients: a systematic literature review. BMC Nephrol. 2011;12(1):35.

    Article  Google Scholar 

  23. Dhondup T, Qian Q. Electrolyte and acid-base disorders in chronic kidney disease and end-stage kidney failure. Blood Purif. 2017;43(1–3):179–88.

    Article  CAS  Google Scholar 

  24. Kim H-Y, Baylis C, Verlander JW, Han K-H, Reungjui S, Handlogten ME, et al. Effect of reduced renal mass on renal ammonia transporter family, Rh C glycoprotein and Rh B glycoprotein, expression. Am J Physiol Renal Physiol. 2007;293(4):F1238–47.

    Article  CAS  Google Scholar 

  25. Piperi C, Kalofoutis C, Tzivras M, Troupis T, Skenderis A, Kalofoutis A. Effects of hemodialysis on serum lipids and phospholipids of end-stage renal failure patients. Mol Cell Biochem. 2004;265(1):57–61. https://doi.org/10.1023/b:mcbi.0000044315.74038.78.

    Article  CAS  PubMed  Google Scholar 

  26. Honda H, Qureshi AR, Heimbürger O, Barany P, Wang K, Pecoits-Filho R, et al. Serum albumin, c-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am J Kidney Dis. 2006;47(1):139–48. https://doi.org/10.1053/j.ajkd.2005.09.014.

    Article  CAS  PubMed  Google Scholar 

  27. George R, Haywood A, Khan S, Radovanovic M, Simmonds J, Norris R. Enhancement and suppression of ionization in drug analysis using HPLC–MS/MS in support of therapeutic drug monitoring: a review of current knowledge of its minimization and assessment. Ther Drug Monit. 2018;40(1):1–8. https://doi.org/10.1097/ftd.0000000000000471.

    Article  CAS  PubMed  Google Scholar 

  28. Hewavitharana AK, Tan SK, Shaw PN. Strategies for the detection and elimination of matrix effects in quantitative LC–MS analysis. LCGC N Am. 2014;32(1):54–64.

    CAS  Google Scholar 

  29. Kratochwil NA, Huber W, Müller F, Kansy M, Gerber PR. Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol. 2002;64(9):1355–74.

    Article  CAS  Google Scholar 

  30. Ocque AJ, Hagler CE, DiFrancesco R, Morse GD, Talal AH. Ultra-performance liquid chromatography tandem mass spectrometry for determination of direct acting antiviral drugs in human liver fine needle aspirates. J Chromatogr B. 2017;1052:103–9. https://doi.org/10.1016/j.jchromb.2017.03.020.

    Article  CAS  Google Scholar 

  31. Ocque AJ, Hagler CE, Difrancesco R, Woolwine-Cunningham Y, Bednasz CJ, Morse GD, et al. Development and validation of a UPLC–MS/MS method for the simultaneous determination of paritaprevir and ritonavir in rat liver. Bioanalysis. 2016;8(13):1353–63. https://doi.org/10.4155/bio-2016-0040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Food, Administration D. Bioanalytical method validation. Guidance for industry. 2018. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry. Accessed 29 Oct 2019.

  33. Matuszewski B, Constanzer M, Chavez-Eng C. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal Chem. 2003;75(13):3019–30.

    Article  CAS  Google Scholar 

  34. Viekira P. Highlights of prescribing information. North Chicago: AbbVie Inc.; 2014.

    Google Scholar 

  35. Feld JJ. Direct-acting antivirals for hepatitis C virus (HCV): the progress continues. Curr Drug Targets. 2017;18(7):851–62.

    Article  CAS  Google Scholar 

  36. Pawlotsky JM. Treatment failure and resistance with direct-acting antiviral drugs against hepatitis C virus. Hepatology. 2011;53(5):1742–51.

    Article  CAS  Google Scholar 

  37. Farouk F, Nabhan S, Niessen WM, Azzazy HM. LC–MS/MS assay for assessing medical adherence in patients under warfarin maintenance therapy. Microchem J. 2018;141:135–40.

    Article  CAS  Google Scholar 

  38. Shen J, Serby M, Surber B, Lee AJ, Ma J, Badri P, et al. Metabolism and disposition of pan-genotypic inhibitor of HCV NS5A ombitasvir in humans. Drug Metab Dispos. 2016;8:1148–57.

    Article  Google Scholar 

  39. Schellinger AP, Carr PW. Isocratic and gradient elution chromatography: a comparison in terms of speed, retention reproducibility and quantitation. J Chromatogr A. 2006;1109(2):253–66.

    Article  CAS  Google Scholar 

  40. Velenosi TJ, Urquhart BL. Pharmacokinetic considerations in chronic kidney disease and patients requiring dialysis. Exp Opin Drug Metab Toxicol. 2014;10(8):1131–43. https://doi.org/10.1517/17425255.2014.931371.

    Article  CAS  Google Scholar 

  41. Mason NA. Polypharmacy and medication-related complications in the chronic kidney disease patient. Curr Opin Nephrol Hypertens. 2011;20(5):492–7.

    Article  Google Scholar 

  42. Ballew SH, Chen Y, Daya NR, Godino JG, Windham BG, McAdams-DeMarco M, et al. Frailty, kidney function, and polypharmacy: the atherosclerosis risk in communities (ARIC) study. Am J Kidney Dis. 2017;69(2):228–36.

    Article  Google Scholar 

  43. Zurek G. LC–MS/MS as versatile tool in therapeutic drug monitoring. Pharmacopsychiatry. 2018;51(03):19.

    Google Scholar 

  44. Williams L, Lodder H, Jones R, Jordan S, Calverley R, Cleeve M et al. Phospholipid removal: a comparison between traditional liquid–liquid extraction (LLE) and supported liquid extraction (SLE) using LC-MS/MS analysis. 2009. Available from: http://data.biotage.co.jp/pdf/poster/10205_asms_2009_lle_sle+_phospolipids_2_.pdf. Accessed 29 Oct 2019.

  45. Guiard-Schmid J-B, Poirier J-M, Meynard J-L, Bonnard P, Gbadoe AH, Amiel C, et al. High variability of plasma drug concentrations in dual protease inhibitor regimens. Antimicrob Agents Chemother. 2003;47(3):986–90. https://doi.org/10.1128/AAC.47.3.986-990.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Menon RM, Klein CE, Podsadecki TJ, Chiu YL, Dutta S, Awni WM. Pharmacokinetics and tolerability of paritaprevir, a direct acting antiviral agent for hepatitis C virus treatment, with and without ritonavir in healthy volunteers. Br J Clin Pharmacol. 2016;81(5):929–40. https://doi.org/10.1111/bcp.12873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Wilfried Niessen (hyphen MassSpec, Margrietstraat 34, 2215 HJ Voorhout, the Netherlands) for his appreciated efforts in revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faten Farouk.

Ethics declarations

Funding

This study did not receive any funding.

Conflict of interest

Authors confirm no conflict of interest.

Ethics Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Study was approved by the ethics committee of Cairo University; Faculty of Medicine; 2016.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farouk, F., Wahba, D., Mogawer, S. et al. Development and Validation of a New LC–MS/MS Analytical Method for Direct-Acting Antivirals and Its Application in End-Stage Renal Disease Patients. Eur J Drug Metab Pharmacokinet 45, 89–99 (2020). https://doi.org/10.1007/s13318-019-00584-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-019-00584-6

Navigation