Skip to main content
Log in

The Role of Drug Metabolites in the Inhibition of Cytochrome P450 Enzymes

  • Current opinion
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Following the drug administration, patients are exposed not only to the parent drug itself, but also to the metabolites generated by drug-metabolizing enzymes. The role of drug metabolites in cytochrome P450 (CYP) inhibition and subsequent drug–drug interactions (DDIs) have recently become a topic of considerable interest and scientific debate. The list of metabolites that were found to significantly contribute to clinically relevant DDIs is constantly being expanded and reported in the literature. New strategies have been developed for better understanding how different metabolites of a drug candidate contribute to its pharmacokinetic properties and pharmacological as well as its toxicological effects. However, the testing of the role of metabolites in CYP inhibition is still not routinely performed during the process of drug development, although the evaluation of time-dependent CYP inhibition during the clinical candidate selection process may provide information on possible effects of metabolites in CYP inhibition. Due to large number of compounds to be tested in the early stages of drug discovery, the experimental approaches for assessment of CYP-mediated metabolic profiles are particularly resource demanding. Consequently, a large number of in silico or computational tools have been developed as useful complement to experimental approaches. In summary, circulating metabolites may be recognized as significant CYP inhibitors. Current data may suggest the need for an optimized effort to characterize the inhibitory potential of parent drugs metabolites on CYP, as well as the necessity to develop the advanced in vitro models that would allow a better quantitative predictive value of in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nettleton DO, Einolf HJ. Assessment of cytochrome p450 enzyme inhibition and inactivation in drug discovery and development. Curr Top Med Chem. 2011;11(4):382–403.

    Article  CAS  PubMed  Google Scholar 

  2. Obach RS. Pharmacologically active drug metabolites: impact on drug discovery and pharmacotherapy. Pharmacol Rev. 2013;65(2):578–640. doi:10.1124/pr.111.005439.

    Article  CAS  PubMed  Google Scholar 

  3. Sugihara Y, Watanabe K, Vegvari A. Novel insights in drug metabolism by MS imaging. Bioanalysis. 2016;8(6):575–88. doi:10.4155/bio-2015-0020.

    Article  CAS  PubMed  Google Scholar 

  4. Baillie TA, Cayen MN, Fouda H, Gerson RJ, Green JD, Grossman SJ, et al. Drug metabolites in safety testing. Toxicol Appl Pharmacol. 2002;182(3):188–96.

    Article  CAS  PubMed  Google Scholar 

  5. Robison TW, Jacobs A. Metabolites in safety testing. Bioanalysis. 2009;1(7):1193–200. doi:10.4155/bio.09.98.

    Article  CAS  PubMed  Google Scholar 

  6. European Medicines Agency. Guideline on the investigation of drug interactions. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf. Accessed February 5, 2017.

  7. U.S. Department of Health and Human Services. Food and Drug Administration. Center for Drug Evaluation and Research. Guidance for industry: safety testing of drug metabolites. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM079266.pdf. Accessed 5 February, 2017.

  8. Pelkonen O, Pasanen M, Tolonen A, Koskinen M, Hakkola J, Abass K, et al. Reactive metabolites in early drug development: predictive in vitro tools. Curr Med Chem. 2015;22(4):538–50.

    Article  CAS  PubMed  Google Scholar 

  9. Su BH, Tu YS, Lin C, Shao CY, Lin OA, Tseng YJ. Rule-based prediction models of cytochrome P450 inhibition. J Chem Inf Model. 2015;55(7):1426–34. doi:10.1021/acs.jcim.5b00130.

    Article  CAS  PubMed  Google Scholar 

  10. Callegari E, Kalgutkar AS, Leung L, Obach RS, Plowchalk DR, Tse S. Drug metabolites as cytochrome p450 inhibitors: a retrospective analysis and proposed algorithm for evaluation of the pharmacokinetic interaction potential of metabolites in drug discovery and development. Drug Metab Dispos Biol Fate Chem. 2013;41(12):2047–55. doi:10.1124/dmd.113.052241.

    Article  CAS  PubMed  Google Scholar 

  11. Kalgutkar AS, Dalvie D. Predicting toxicities of reactive metabolite-positive drug candidates. Annu Rev Pharmacol Toxicol. 2015;55:35–54. doi:10.1146/annurev-pharmtox-010814-124720.

    Article  CAS  PubMed  Google Scholar 

  12. Attia SM. Deleterious effects of reactive metabolites. Oxidative Med Cell Longev. 2010;3(4):238–53. doi:10.4161/oxim.3.4.13246.

    Article  Google Scholar 

  13. Iverson SL, Smith DA, editors. Metabolite safety in drug development. Wiley-Blackwell: Hoboken; 2016.

    Google Scholar 

  14. Benigni R, Bossa C. Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology. Chem Rev. 2011;111(4):2507–36. doi:10.1021/cr100222q.

    Article  CAS  PubMed  Google Scholar 

  15. Park BK, Boobis A, Clarke S, Goldring CE, Jones D, Kenna JG, et al. Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discovery. 2011;10(4):292–306. doi:10.1038/nrd3408.

    Article  CAS  PubMed  Google Scholar 

  16. Isoherranen N, Hachad H, Yeung CK, Levy RH. Qualitative analysis of the role of metabolites in inhibitory drug–drug interactions: literature evaluation based on the metabolism and transport drug interaction database. Chem Res Toxicol. 2009;22(2):294–8. doi:10.1021/tx800491e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yeung CK, Fujioka Y, Hachad H, Levy RH, Isoherranen N. Are circulating metabolites important in drug–drug interactions?: quantitative analysis of risk prediction and inhibitory potency. Clin Pharmacol Ther. 2011;89(1):105–13. doi:10.1038/clpt.2010.252.

    Article  CAS  PubMed  Google Scholar 

  18. Sutton D, Butler AM, Nadin L, Murray M. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther. 1997;282(1):294–300.

    CAS  PubMed  Google Scholar 

  19. Ohyama K, Nakajima M, Suzuki M, Shimada N, Yamazaki H, Yokoi T. Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: prediction of in vivo drug interactions. Br J Clin Pharmacol. 2000;49(3):244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Narimatsu S, Arai T, Masubuchi Y, Horie T, Hosokawa M, Ueno K, et al. Inactivation of rat cytochrome P450 2D enzyme by a further metabolite of 4-hydroxypropranolol, the major and active metabolite of propranolol. Biol Pharm Bull. 2001;24(9):988–94.

    Article  CAS  PubMed  Google Scholar 

  21. Borkar RM, Bhandi MM, Dubey AP, Ganga Reddy V, Komirishetty P, Nandekar PP, et al. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug–drug and drug–herb interaction by LC-ESI/MS/MS. Biomed Chromatogr BMC. 2016;30(10):1556–72. doi:10.1002/bmc.3721.

    Article  CAS  PubMed  Google Scholar 

  22. Stankov K, Sabo A, Mikov M. Pharmacogenetic biomarkers as tools for pharmacoepidemiology of severe adverse drug reactions. Drug Dev Res. 2013;74(1):1–14. doi:10.1002/ddr.21050.

    Article  CAS  Google Scholar 

  23. Stankov KM, Stanimirov BG, Mikov MM. Pharmacogenomic determinants of response to cardiovascular drugs. Med Pregl. 2015;68(7–8):259–65.

    Article  PubMed  Google Scholar 

  24. Jones DR, Kim SY, Guderyon M, Yun CH, Moran JH, Miller GP. Hydroxywarfarin metabolites potently inhibit CYP2C9 metabolism of S-warfarin. Chem Res Toxicol. 2010;23(5):939–45. doi:10.1021/tx1000283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cho DY, Bae SH, Lee JK, Kim YW, Kim BT, Bae SK. Selective inhibition of cytochrome P450 2D6 by Sarpogrelate and its active metabolite, M-1, in human liver microsomes. Drug Metab Dispos Biol Fate Chem. 2014;42(1):33–9. doi:10.1124/dmd.113.054296.

    Article  PubMed  Google Scholar 

  26. Shitara Y, Hirano M, Sato H, Sugiyama Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther. 2004;311(1):228–36. doi:10.1124/jpet.104.068536.

    Article  CAS  PubMed  Google Scholar 

  27. Ogilvie BW, Zhang D, Li W, Rodrigues AD, Gipson AE, Holsapple J, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug–drug interactions. Drug Metab Dispos Biol Fate Chem. 2006;34(1):191–7. doi:10.1124/dmd.105.007633.

    Article  CAS  PubMed  Google Scholar 

  28. Gan J, Liu-Kreyche P, Humphreys WG. In vitro assessment of cytochrome P450 inhibition and induction potential of tanespimycin and its major metabolite, 17-amino-17-demethoxygeldanamycin. Cancer Chemother Pharmacol. 2012;69(1):51–6. doi:10.1007/s00280-011-1672-2.

    Article  CAS  PubMed  Google Scholar 

  29. Schellander R, Donnerer J. Antidepressants: clinically relevant drug interactions to be considered. Pharmacology. 2010;86(4):203–15. doi:10.1159/000319744.

    Article  CAS  PubMed  Google Scholar 

  30. Westenberg H, Sandner C. Tolerability and safety of fluvoxamine and other antidepressants. Int J Clin Pract. 2006;60(4):482–91. doi:10.1111/j.1368-5031.2006.00865.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crewe HK, Lennard MS, Tucker GT, Woods FR, Haddock RE. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol. 1992;34(3):262–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sager JE, Lutz JD, Foti RS, Davis C, Kunze KL, Isoherranen N. Fluoxetine- and norfluoxetine-mediated complex drug–drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4. Clin Pharmacol Ther. 2014;95(6):653–62. doi:10.1038/clpt.2014.50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. von Moltke LL, Greenblatt DJ, Giancarlo GM, Granda BW, Harmatz JS, Shader RI. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos Biol Fate Chem. 2001;29(8):1102–9.

    Google Scholar 

  34. Reese MJ, Wurm RM, Muir KT, Generaux GT, St John-Williams L, McConn DJ. An in vitro mechanistic study to elucidate the desipramine/bupropion clinical drug–drug interaction. Drug Metab Dispos Biol Fate Chem. 2008;36(7):1198–201. doi:10.1124/dmd.107.020198.

    Article  CAS  PubMed  Google Scholar 

  35. Dodds Ashley ES. Pharmacology of azole antifungal agents. In: Ghannoum MA, Perfect J, editors. Antifungal therapy. New York: Informa Healthcare; 2010. p. 199–218.

    Google Scholar 

  36. Isoherranen N, Kunze KL, Allen KE, Nelson WL, Thummel KE. Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab Dispos Biol Fate Chem. 2004;32(10):1121–31. doi:10.1124/dmd.104.000315.

    Article  CAS  PubMed  Google Scholar 

  37. Templeton IE, Thummel KE, Kharasch ED, Kunze KL, Hoffer C, Nelson WL, et al. Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo. Clin Pharmacol Ther. 2008;83(1):77–85. doi:10.1038/sj.clpt.6100230.

    Article  CAS  PubMed  Google Scholar 

  38. Hohmann N, Kocheise F, Carls A, Burhenne J, Weiss J, Haefeli WE, et al. Dose-dependent bioavailability and cyp3a inhibition contribute to non-linear pharmacokinetics of voriconazole. Clin Pharmacokinet. 2016;55(12):1535–45. doi:10.1007/s40262-016-0416-1.

    Article  CAS  PubMed  Google Scholar 

  39. Giri P, Naidu S, Patel N, Patel H, Srinivas NR. Evaluation of in vitro cytochrome P450 inhibition and in vitro fate of structurally diverse N-oxide metabolites: case studies with clozapine, levofloxacin, roflumilast, voriconazole and zopiclone. Eur J Drug Metab Pharmacokinet. 2016;. doi:10.1007/s13318-016-0385-7.

    Google Scholar 

  40. Eng H, Obach RS. Use of human plasma samples to identify circulating drug metabolites that inhibit cytochrome P450 enzymes. Drug Metab Dispos Biol Fate Chem. 2016;44(8):1217–28. doi:10.1124/dmd.116.071084.

    Article  CAS  PubMed  Google Scholar 

  41. Yu H, Tweedie D. A perspective on the contribution of metabolites to drug–drug interaction potential: the need to consider both circulating levels and inhibition potency. Drug Metab Dispos Biol Fate Chem. 2013;41(3):536–40. doi:10.1124/dmd.112.048892.

    Article  CAS  PubMed  Google Scholar 

  42. Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing KF, Kollman PA, et al. Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos Biol Fate Chem. 2000;28(11):1369–78.

    CAS  PubMed  Google Scholar 

  43. Orr ST, Ripp SL, Ballard TE, Henderson JL, Scott DO, Obach RS, et al. Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug–drug interaction risks. J Med Chem. 2012;55(11):4896–933. doi:10.1021/jm300065h.

    Article  CAS  PubMed  Google Scholar 

  44. Obach RS, Kalgutkar AS, Dalvie DK. In vitro methods for evaluation of drug metabolism: identification of active and inactive metabolites and the enzymes that generate them. In: Iverson SL, Smith DA, editors. Metabolite safety in drug development. Wiley-Blackwell: Hoboken; 2016. p. 106–10.

    Google Scholar 

  45. Kirchmair J, Williamson MJ, Tyzack JD, Tan L, Bond PJ, Bender A, et al. Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J Chem Inf Model. 2012;52(3):617–48. doi:10.1021/ci200542m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van de Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov. 2003;2(3):192–204. doi:10.1038/nrd1032.

    Article  PubMed  Google Scholar 

  47. Andrade CH, Silva DC, Braga RC. In silico prediction of drug metabolism by P450. Curr Drug Metab. 2014;15(5):514–25.

    Article  CAS  PubMed  Google Scholar 

  48. Sridhar J, Liu J, Foroozesh M, Stevens CLK. Insights on cytochrome P450 enzymes and inhibitors obtained through QSAR studies. Molecules. 2012;17(8):9283–305. doi:10.3390/molecules17089283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kirchmair J, Goller AH, Lang D, Kunze J, Testa B, Wilson ID, et al. Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov. 2015;14(6):387–404. doi:10.1038/nrd4581.

    Article  CAS  PubMed  Google Scholar 

  50. Shao CY, Su BH, Tu YS, Lin C, Lin OA, Tseng YJ. CypRules: a rule-based P450 inhibition prediction server. Bioinformatics (Oxford, England). 2015;31(11):1869–71. doi:10.1093/bioinformatics/btv043.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momir Mikov.

Ethics declarations

Conflict of interest

MM, MÐ, NP, BS, SG-K, KS and HA-S have no potential conflicts of interest related to this manuscript.

Funding sources

This research was supported by HORIZON 2020 MEDLEM project No. 690876, Project for Scientific and Technological Development of Vojvodina No. 114-451-2072-/2016-02 and Project of Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 173014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikov, M., Đanić, M., Pavlović, N. et al. The Role of Drug Metabolites in the Inhibition of Cytochrome P450 Enzymes. Eur J Drug Metab Pharmacokinet 42, 881–890 (2017). https://doi.org/10.1007/s13318-017-0417-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-017-0417-y

Navigation