Skip to main content
Log in

Review of Pharmacokinetic Data of Different Drug Classes in Goto-Kakizaki Rats, a Non-obese Model for Type 2 Diabetes Mellitus: Case Studies and Perspectives

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Goto-Kakizaki (GK) rats represent a unique non-obese and lean model with manifestation of type 2 diabetes (T2DM) broadly mimicking the human T2DM development. Therefore, in addition to the use of GK rats to test the efficacy of drugs, it may represent a great tool to study the influence of altered physiological process and/or organ specific pathophysiological changes (i.e., liver, kidney, etc.) on the disposition of drugs. The objectives of the review were: (a) to compile the published pharmacokinetic data of several drugs, such as cephalexin, cyclosporine, exendin-4, gliclazide, grepafloxacin, rosuvastatin, salsalate, salicylic acid, and theophylline, in GK rats relative to normal rats; and (b) critically evaluate the possible role of physiologically altered processes on the pharmacokinetics of reviewed drugs. The drugs chosen for this review provided a spread of various physiological processes and represented reasonable pool of published data set to fulfil the objectives of the review. The use of GK rats for gathering pharmacokinetic data may aid in making decisions on candidate selection and/or anticipating clinical pharmacology-related issues to the aid drug development in the diabetes area. However, given the interplay and complexities of multiple pathways governing drug disposition, caution needs to be exercised in data interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair M. Diabetes mellitus review. Urol Nurs. 2016;36:27–36.

    PubMed  Google Scholar 

  2. George AM, Jacob AG, Fogelfeld L. Lean diabetes mellitus: an emerging entity in the era of obesity. World J Diabetes. 2015;6:613–20.

    PubMed  PubMed Central  Google Scholar 

  3. Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92:63–9.

    Article  PubMed  Google Scholar 

  4. Cornell S. Continual evolution of type 2 diabetes: an update on pathophysiology and emerging treatment options. Ther Clin Risk Manag. 2015;11:621–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buchwald H, Menchaca HJ, Michalek VN, Bertin NT. Ileal effect on blood glucose, HbA1c, and GLP-1 in Goto-Kakizaki rats. Obes Surg. 2014;24:1954–60.

    Article  PubMed  Google Scholar 

  6. Portha B, Giroix MH, Tourrel CC, Le-Stunff H, Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. Methods Mol Biol. 2012;933:125–59.

    CAS  PubMed  Google Scholar 

  7. Xue B, Sukumaran S, Nie J, Jusko WJ, Dubois DC, Almon RR. Adipose tissue deficiency and chronic inflammation in diabetic Goto-Kakizaki rats. PLoS One. 2011;6:e17386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Almon RR, DuBois DC, Lai W. XueB, Nie J, JuskoWJ. Gene expression analysis of hepatic roles in cause and development of diabetes in Goto-Kakizaki rats. J Endocrinol. 2009;200:331–46.

    Article  CAS  PubMed  Google Scholar 

  9. Santos MS, Santos DL, Palmeira CM, Seiça R, Moreno AJ, Oliveira CR. Brain and liver mitochondria isolated from diabetic Goto-Kakizaki rats show different susceptibility to induced oxidative stress. Diabetes Metab Res Rev. 2001;17:223–30.

    Article  CAS  PubMed  Google Scholar 

  10. Goto Y, Kakizaki M. The spontaneous diabetic rat: a model of non-insulin dependent diabetes mellitus. Proc Jpn Acad. 1981;57:381–4.

    Article  Google Scholar 

  11. Goto Y, Suzuki K, Sasaki M, Toyota T. Development of diabetes in the non-obese NIDDM rat (GK rat). AdvExp Med Biol. 1988;246:29–31.

    Article  CAS  Google Scholar 

  12. McIntosh CHS, Pederson RA. Noninsulin-dependent animal models of diabetes mellitus. In: McNeill JH, editor. Experimental models of diabetes. Boca Raton: CRC; 1999. p. 337–98.

    Google Scholar 

  13. Watanabe K, Terada K, Sato J. Intestinal absorption of cephalexin in diabetes mellitus model rats. Eur J Pharm Sci. 2003;19:91–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ogata M, Uchimura T, Iizuka Y, Murata R, Suzuki S, Toyota T, Hikichi N. Effect of non-insulin dependent diabetes on cyclosporin a disposition in Goto-Kakizaki (GK) Rats. Biol Pharm Bull. 1997;20:1026–9.

    Article  CAS  PubMed  Google Scholar 

  15. Gao W, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of exendin-4 in type 2 diabetic Goto-Kakizaki rats. JPET. 2011;336:881–90.

    Article  CAS  Google Scholar 

  16. Center for drug evaluation research. BYETTA® (exenatide injection) pharmacology review, US FDA, NDA 21-773, 2005. pp. 1–393.

  17. Mustajarvi II, Ihalmo P, Uutela P, Madetoja M, Kortejarvi H, Ketola RA, Yliperttula M. Hypoglycemic interaction of two drugsin control rats and in a rat model of diabetes. Univ Helsinki. 2013:52–54.

  18. Watanabea M, Kobayashia M, Oguraa J, Takahashib N, Yamaguchia H, Isekia K. Alteration of pharmacokinetics of grepafloxacin in type 2 diabetic rats. J Pharm Pharm Sci. 2014;17:25–33.

    Article  Google Scholar 

  19. He L, Yang Y, Guo C, Yao D, Liu HH, Sheng JJ, Zhou WP, Ren J, DongLiu X, Pan GY. Opposite regulation of hepatic breast cancer resistance protein in type 1 and 2 diabetesmellitus. Eur J Pharmacol. 2014;724:185–92.

    Article  CAS  PubMed  Google Scholar 

  20. Cao Y, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetics of salsalate and salicylic acid in normal and diabetic rats. Biopharm Drug Dispos. 2012;33:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takahashi A, Saito K, Takizawa Y, Murata R. Effect of Diabetes on theophylline disposition in the rat. Jpn J Hosp Pharm. 1999;25:603–7.

    Article  CAS  Google Scholar 

  22. Terada T, Sawada K, Saito H, Hashimoto Y, Inui K. Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. Am J Physiol. 1999;276:1435–41.

    Google Scholar 

  23. Ogihara H, Saito H, Shin BC, Terada T, Takenoshita S, Nagamachi Y, Inui K, Takata K. Immuno-localization of1 H/peptide co-transporter in rat digestive tract. Biochem Biophys Res Commun. 1996;220:848–52.

    Article  CAS  PubMed  Google Scholar 

  24. Padoin C, Tod M, Perret G, Petitjean O. Analysis of the pharmacokinetic interaction between cephalexin and quinapril by a nonlinear mixed-effect model. Antimicrob Agents Chemother. 1998;42:1463–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hsiu SL, Hou YC, Wang YH, Tsao CW, Su SF, Chao PD. Quercetin significantly decreased cyclosporin oral bioavailability in pigs and rats. Life Sci. 2002;72:227–35.

    Article  CAS  PubMed  Google Scholar 

  26. Ogata M, Iizuka Y, Murata R, Hikichi N. Effect of streptozotocin-induced diabetes on cyclosporin A disposition in rats. Biol Pharm Bull. 1996;19:1586–90.

    Article  CAS  PubMed  Google Scholar 

  27. Copley K, McCowen K, Hiles R, Nielsen LL, Young A, Parkes DG. Investigation of exenatide elimination and its in vivo and in vitro degradation. Curr Drug Metab. 2006;7:367–74.

    Article  CAS  PubMed  Google Scholar 

  28. Herings RM, de Boer A, Stricker BH, Leufkens HG, Porsius A. Hypoglycaemia associated with use of inhibitors of angiotensin converting enzyme. Lancet. 1995;345:1195–8.

    Article  CAS  PubMed  Google Scholar 

  29. Yamaguchi H, Yano I, Hashimoto Y, Inui K. Secretory mechanisms of grepafloxacin andlevofloxacin in the human intestinal cell line Caco-2. J Pharmacol Exp Ther. 2000;295:360–6.

    CAS  PubMed  Google Scholar 

  30. Yamaguchi H, Yano I, Saito H, Inui K. Pharmacokinetic role of P-glycoprotein in oral bioavailability and intestinal secretion of grepafloxacin in vivo. J Pharmacol Exp Ther. 2002;300:1063–9.

    Article  CAS  PubMed  Google Scholar 

  31. Nawa A, Fujita-Hamabe W, Tokuyama S. Inducible nitric oxide synthase-mediated decrease of intestinal P-glycoprotein expression under streptozotocin-induced diabetic conditions. Life Sci. 2010;86:402–9.

    Article  CAS  PubMed  Google Scholar 

  32. Hobbs M, Parker C, Birch H, Kenworthy K. Understanding the interplay of drug transporters involved in the disposition of rosuvastatin in the isolated perfused rat liver using a physiologically-based pharmacokinetic model. Xenobiotica. 2012;42:327–38.

    Article  CAS  PubMed  Google Scholar 

  33. Huang L, Wan Y, Grimm S. ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab Dispos. 2006;34:738–42.

    Article  CAS  PubMed  Google Scholar 

  34. Anderson K, Wherle L, Park M, Nelson K, Nguyen L. Salsalate, an old, inexpensive drug with potential new indications: a review of the evidence from 3 recent studies. Am Health Drug Benefits. 2014;7:231–5.

    PubMed  PubMed Central  Google Scholar 

  35. Faghihimani E, Aminorroaya A, Rezvanian H, Adibi P, Ismail-Beigi F, Amini M. Salsalate improves glycemic control in patients with newly diagnosed type 2 diabetes. Acta Diabetol. 2013;5:537–43.

    Article  Google Scholar 

  36. Goldfine AB, Silver R, Aldhahi W, Cai D, Tatro E, Lee J, Shoelson SE. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2. Clin Transl Sci. 2008;1:36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dahlqvist R, Billing B, Miners JO, Birkett DJ. Nonlinear metabolic disposition of theophylline. Ther Drug Monit. 1984;6:290–7.

    Article  CAS  PubMed  Google Scholar 

  38. Srinivas NR. Strategies for preclinical pharmacokinetic investigation in streptozotocin-induced diabetes mellitus (DMIS) and alloxan-induced diabetes mellitus (DMIA) rat models: case studies and perspectives. Eur J Drug Metab Pharmacokinet. 2015;40:1–12.

    Article  CAS  PubMed  Google Scholar 

  39. Marathe CS, Rayner CK, Jones KL, Horowitz M. Novel insights into the effects of diabetes on gastric motility. Expert Rev Gastroenterol Hepatol. 2016;10:581–93.

    Article  CAS  PubMed  Google Scholar 

  40. Thazhath SS, Marathe CS, Wu T, Chang J, Khoo J, Kuo P, Checklin HL, Bound MJ, Rigda RS, Crouch B, Jones KL, Horowitz M, Rayner CK. The glucagon-like peptide 1 receptor agonist exenatide inhibits small intestinal motility, flow, transit, and absorption of glucose in healthy subjects and patients with type 2 diabetes: a randomized controlled trial. Diabetes. 2016;65:269–75.

    CAS  PubMed  Google Scholar 

  41. Boll M, Markovich D, Weber WM, Korte H, Daniel H, Murer H. Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, beta-lactam antibiotics and ACE-inhibitors. Pflugers Arch. 1994;429:146–9.

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe K, Sawano T, Endo T, Sakata M, Sato J. Studies on intestinal absorption of sulpiride: transepithelial transport of sulpiride across the human intestinal cell line Caco-2. Biol Pharm Bull. 2002;25:1345–50.

    Article  CAS  PubMed  Google Scholar 

  43. Moisés EC, Duarte LB, Cavalli RC, Marques MP, Lanchote V, Duarte G, da Cunha SP. Pharmacokinetics of lidocaine and its metabolite in peridural anesthesia administered to pregnant women with gestational diabetes mellitus. Eur J Clin Pharmacol. 2008;64:1189–96.

    Article  PubMed  Google Scholar 

  44. Matzke GR, Frye RF, Early JJ, Straka RJ, Carson SW. Evaluation of the influence of diabetes mellitus on antipyrine metabolism and CYP1A2 and CYP2D6 activity. Pharmacotherapy. 2000;20:182–90.

    Article  CAS  PubMed  Google Scholar 

  45. Moss DM, Neary M, Owen A. The role of drug transporters in the kidney: lessons from tenofovir. Front Pharmacol. 2014;5:248.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tzvetkov MV, dos Santos Pereira JN, Meineke I, Saadatmand AR, Stingl JC, Brockmöller J. Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem. Pharmacol. 2013;86:666–78.

    Article  CAS  PubMed  Google Scholar 

  47. Moss DM, Kwan WS, Liptrott NJ, Smith DL, Siccardi M, Khoo SH, Back DJ, Owen A. Raltegravir is a substrate for SLC22A6: a putative mechanism for the interaction between raltegravir and tenofovir. Antimicrob Agents Chemother. 2011;55:879–87.

    Article  CAS  PubMed  Google Scholar 

  48. DeGorter MK, Xia CQ, Yang JJ, Kim RB. Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol. 2012;52:249–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuggehally R. Srinivas.

Ethics declarations

Conflict of interest

Authors are employees of Cadila Health Care Ltd. and wish to declare that they have no conflict of interest or competing interests in the contents of the review manuscript (ZRC Publication No. 488).

Funding

The present work was not funded by any external sources.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, H., Giri, P. & Srinivas, N.R. Review of Pharmacokinetic Data of Different Drug Classes in Goto-Kakizaki Rats, a Non-obese Model for Type 2 Diabetes Mellitus: Case Studies and Perspectives. Eur J Drug Metab Pharmacokinet 42, 173–182 (2017). https://doi.org/10.1007/s13318-016-0373-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0373-y

Keywords

Navigation