Skip to main content
Log in

Regulations of Xenobiotics and Endobiotics on Carboxylesterases: A Comprehensive Review

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Carboxylesterases (CESs) play major roles in catalyzing the hydrolysis of a wide range of ester- and amide-containing compounds. CESs dominate both the biotransformation of numerous therapeutic drugs and the detoxification of environmental toxicants, and the activity alteration of CESs may be a determinant reason for modification of the resultant pharmacokinetic/pharmacodynamic profile when two or more drugs are concurrently used. Herein, we provide a comprehensive review of the current literature involving of induction and inhibition on CESs by both exogenous and endogenous compounds. In particular, the inhibition constant and inhibition pattern of inhibitors on CESs in studies using animal microsomes or human recombinant CESs are summarized. Further studies are needed to clarify the underlying regulation mechanism, and alterations in CESs activity should be taken into consideration for safe clinical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang M, Mukundan M, Yang J, Charpentier N, LeCluyse EL, Black C, Yang D, Shi D, Yan B. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol. J Pharmacol Exp Ther. 2006;319:1467–76.

    Article  CAS  PubMed  Google Scholar 

  2. Takai S, Matsuda A, Usami Y, Adachi T, Sugiyama T, Katagiri Y, Tatematsu M, Hirano K. Hydrolytic profile for ester- or amide-linkage by carboxylesterases pI 5.3 and 4.5 from human liver. Biol Pharm Bull. 1997;20:869–73.

    Article  CAS  PubMed  Google Scholar 

  3. Barthel BL, Torres RC, Hyatt JL, Edwards CC, Hatfield MJ, Potter PM, Koch TH. Identification of human intestinal carboxylesterase as the primary enzyme for activation of a doxazolidine carbamate prodrug. J Med Chem. 2008;51:298–304.

    Article  CAS  PubMed  Google Scholar 

  4. Nishi K, Huang H, Kamita SG, Kim IH, Morisseau C, Hammock BD. Characterization of pyrethroid hydrolysis by the human liver carboxylesterases hCE-1 and hCE-2. Arch Biochem Biophys. 2006;445:115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Markey GM. Carboxylesterase 1 (Ces1): from monocyte marker to major player. J Clin Pathol. 2011;64:107–9.

    Article  PubMed  Google Scholar 

  6. Holmes RS, Wright MW, Laulederkind SJ, Cox LA, Hosokawa M, Imai T, Ishibashi S, Lehner R, Miyazaki M, Perkins EJ, Potter PM, Redinbo MR, Robert J, Satoh T, Yamashita T, Yan B, Yokoi T, Zechner R, Maltais LJ. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins. Mamm Genome. 2010;21:427–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones RD, Taylor AM, Tong EY, Repa JJ. Carboxylesterases are uniquely expressed among tissues and regulated by nuclear hormone receptors in the mouse. Drug Metab Dispos. 2013;41:40–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Munger JS, Shi GP, Mark EA, Chin DT, Gerard C, Chapman HA. A serine esterase released by human alveolar macrophages is closely related to liver microsomal carboxylesterases. J Biol Chem. 1991;266:18832–8.

    CAS  PubMed  Google Scholar 

  9. Schwer H, Langmann T, Daig R, Becker A, Aslanidis C, Schmitz G. Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. Biochem Biophys Res Commun. 1997;233:117–20.

    Article  CAS  PubMed  Google Scholar 

  10. Xu G, Zhang W, Ma MK, McLeod HL. Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin Cancer Res. 2002;8:2605–11.

    CAS  PubMed  Google Scholar 

  11. Satoh T, Taylor P, Bosron WF, Sanghani SP, Hosokawa M, La Du BN. Current progress on esterases: from molecular structure to function. Drug Metab Dispos. 2002;30:488–93.

    Article  CAS  PubMed  Google Scholar 

  12. Miyazaki M, Kamiie K, Soeta S, Taira H, Yamashita T. Molecular cloning and characterization of a novel carboxylesterase-like protein that is physiologically present at high concentrations in the urine of domestic cats (Felis catus). Biochem J. 2003;370:101–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holmes RS, Cox LA, Vandeberg JL. Mammalian carboxylesterase 5: comparative biochemistry and genomics. Comp Biochem Physiol Part D Genom Proteom. 2008;3:195–204.

    Google Scholar 

  14. Satoh T, Hosokawa M. The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol. 1998;38:257–88.

    Article  CAS  PubMed  Google Scholar 

  15. Nocca G, Calla C, Martorana GE, Cicillini L, Rengo S, Lupi A, Cordaro M, Luisa GM, Spagnuolo G. Effects of dental methacrylates on oxygen consumption and redox status of human pulp cells. Biomed Res Int. 2014;2014:956579.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chang MC, Lin LD, Chuang FH, Chan CP, Wang TM, Lee JJ, Jeng PY, Tseng WY, Lin HJ, Jeng JH. Carboxylesterase expression in human dental pulp cells: role in regulation of BisGMA-induced prostanoid production and cytotoxicity. Acta Biomater. 2012;8:1380–7.

    Article  CAS  PubMed  Google Scholar 

  17. Hattori K, Igarashi M, Itoh M, Tomisawa H, Ozawa N, Tateishi M. Purification and characterization of glucocorticoid-inducible steroid esterase in rat hepatic microsomes. Biochem Pharmacol. 1992;43:1929–37.

    Article  CAS  PubMed  Google Scholar 

  18. Maruichi T, Fukami T, Nakajima M, Yokoi T. Transcriptional regulation of human carboxylesterase 1A1 by nuclear factor-erythroid 2 related factor 2 (Nrf2). Biochem Pharmacol. 2010;79:288–95.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Cheng X, Aleksunes L, Klaassen CD. Transcription factor-mediated regulation of carboxylesterase enzymes in livers of mice. Drug Metab Dispos. 2012;40:1191–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi W, Cogdell D, Feng Y, Hamilton SR, Zhang W. Transcriptional activation of the carboxylesterase 2 gene by the p53 pathway. Cancer Biol Ther. 2006;5:1450–6.

    Article  CAS  PubMed  Google Scholar 

  21. Fleming CD, Bencharit S, Edwards CC, Hyatt JL, Tsurkan L, Bai F, Fraga C, Morton CL, Howard-Williams EL, Potter PM, Redinbo MR. Structural insights into drug processing by human carboxylesterase 1: tamoxifen, mevastatin, and inhibition by benzil. J Mol Biol. 2005;352:165–77.

    Article  CAS  PubMed  Google Scholar 

  22. Fukami T, Takahashi S, Nakagawa N, Maruichi T, Nakajima M, Yokoi T. In vitro evaluation of inhibitory effects of antidiabetic and antihyperlipidemic drugs on human carboxylesterase activities. Drug Metab Dispos. 2010;38:2173–8.

    Article  CAS  PubMed  Google Scholar 

  23. Meyer BH, Scholtz HE, Muller FO, Luus HG, de la Rey N, Seibert-Grafe M, Eckert HG, Metzger H. Lack of interaction between ramipril and simvastatin. Eur J Clin Pharmacol. 1994;47:373–5.

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi S, Katoh M, Saitoh T, Nakajima M, Yokoi T. Different inhibitory effects in rat and human carboxylesterases. Drug Metab Dispos. 2009;37:956–61.

    Article  CAS  PubMed  Google Scholar 

  25. Xu YJ, Zhang CL, Li XP, Wu T, Ren XH, Liu D. Evaluation of the inhibitory effects of antihypertensive drugs on human carboxylesterase in vitro. Drug Metab Pharmacokinet. 2013;28:468–74.

    Article  CAS  Google Scholar 

  26. Zhu HJ, Appel DI, Peterson YK, Wang Z, Markowitz JS. Identification of selected therapeutic agents as inhibitors of carboxylesterase 1: potential sources of metabolic drug interactions. Toxicology. 2010;270:59–65.

    Article  CAS  PubMed  Google Scholar 

  27. Pau AK, Boyd SD. Recognition and management of significant drug interactions in HIV patients: challenges in using available data to guide therapy. Clin Pharmacol Ther. 2010;88:712–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rhoades JA, Peterson YK, Zhu HJ, Appel DI, Peloquin CA, Markowitz JS. Prediction and in vitro evaluation of selected protease inhibitor antiviral drugs as inhibitors of carboxylesterase 1: a potential source of drug-drug interactions. Pharm Res. 2012;29:972–82.

    Article  CAS  PubMed  Google Scholar 

  29. Li P, Zhu CL, Zhang XX, Gan L, Yu HZ, Gan Y. Reversible inhibitory effects of saturated and unsaturated alkyl esters on the carboxylesterases activity in rat intestine. Lipids. 2010;45:603–12.

    Article  CAS  PubMed  Google Scholar 

  30. Mesange F, Sebbar M, Capdevielle J, Guillemot JC, Ferrara P, Bayard F, Poirot M, Faye JC. Identification of two tamoxifen target proteins by photolabeling with 4-(2-morpholinoethoxy)benzophenone. Bioconjug Chem. 2002;13:766–72.

    Article  CAS  PubMed  Google Scholar 

  31. Shimizu M, Fukami T, Nakajima M, Yokoi T. Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase. Drug Metab Dispos. 2014;42:1103–9.

    Article  PubMed  Google Scholar 

  32. Bailey DN, Briggs JR. Procainamide and quinidine inhibition of the human hepatic degradation of meperidine in vitro. J Anal Toxicol. 2003;27:142–4.

    Article  CAS  PubMed  Google Scholar 

  33. Liu D, Xu YJ, Ren XH, Xiang DC, Zhang CL. Effect of Proeainamide on the metabolism of Imidapril through carboxylesterase 1(CES1). China Pharm. 2011;14:6–8.

    Google Scholar 

  34. Tsurkan LG, Hatfield MJ, Edwards CC, Hyatt JL, Potter PM. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors. Chem Biol Interact. 2013;203:226–30.

    Article  CAS  PubMed  Google Scholar 

  35. Hosokawa M, Hattori K, Satoh T. Differential responses of rat hepatic microsomal carboxylesterase isozymes to glucocorticoids and pregnenolone 16 alpha-carbonitrile. Biochem Pharmacol. 1993;45:2317–22.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu W, Song L, Zhang H, Matoney L, LeCluyse E, Yan B. Dexamethasone differentially regulates expression of carboxylesterase genes in humans and rats. Drug Metab Dispos. 2000;28:186–91.

    CAS  PubMed  Google Scholar 

  37. Zhang C, Gao P, Yin W, Xu Y, Xiang D, Liu D. Dexamethasone regulates differential expression of carboxylesterase 1 and carboxylesterase 2 through activation of nuclear receptors. J Huazhong Univ Sci Technol Med Sci. 2012;32:798–805.

    Article  CAS  PubMed  Google Scholar 

  38. Quinney SK, Sanghani SP, Davis WI, Hurley TD, Sun Z, Murry DJ, Bosron WF. Hydrolysis of capecitabine to 5’-deoxy-5-fluorocytidine by human carboxylesterases and inhibition by loperamide. J Pharmacol Exp Ther. 2005;313:1011–6.

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Williams ET, Bourgea J, Wong YN, Patten CJ. Characterization of recombinant human carboxylesterases: fluorescein diacetate as a probe substrate for human carboxylesterase 2. Drug Metab Dispos. 2011;39:1329–33.

    Article  CAS  PubMed  Google Scholar 

  40. Wadkins RM, Hyatt JL, Yoon KJ, Morton CL, Lee RE, Damodaran K, Beroza P, Danks MK, Potter PM. Discovery of novel selective inhibitors of human intestinal carboxylesterase for the amelioration of irinotecan-induced diarrhea: synthesis, quantitative structure-activity relationship analysis, and biological activity. Mol Pharmacol. 2004;65:1336–43.

    Article  CAS  PubMed  Google Scholar 

  41. Bravo GR, Huwyler J, Boess F, Walter I, Bittner B. In vitro investigation on the impact of the surface-active excipients Cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam. Biopharm Drug Dispos. 2004;25:37–49.

    Article  Google Scholar 

  42. Ren X, Mao X, Cao L, Xue K, Si L, Qiu J, Schimmer AD, Li G. Nonionic surfactants are strong inhibitors of cytochrome P450 3A biotransformation activity in vitro and in vivo. Eur J Pharm Sci. 2009;36:401–11.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang C, Xu Y, Zhong Q, Li X, Gao P, Feng C, Chu Q, Chen Y, Liu D. In vitro evaluation of the inhibitory potential of pharmaceutical excipients on human carboxylesterase 1A and 2. PLoS ONE. 2014;9:e93819.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang J, Shi D, Yang D, Song X, Yan B. Interleukin-6 alters the cellular responsiveness to clopidogrel, irinotecan, and oseltamivir by suppressing the expression of carboxylesterases HCE1 and HCE2. Mol Pharmacol. 2007;72:686–94.

    Article  CAS  PubMed  Google Scholar 

  45. Donato MT, Gomez-Lechon MJ, Jover R, Nakamura T, Castell JV. Human hepatocyte growth factor down-regulates the expression of cytochrome P450 isozymes in human hepatocytes in primary culture. J Pharmacol Exp Ther. 1998;284:760–7.

    CAS  PubMed  Google Scholar 

  46. Okumura M, Iwakiri T, Takagi A, Hirabara Y, Kawano Y, Arimori K. Hepatocyte growth factor suppresses the anticancer effect of irinotecan by decreasing the level of active metabolite in HepG2 cells. Biochem Pharmacol. 2011;82:1720–30.

    Article  CAS  PubMed  Google Scholar 

  47. Crow JA, Herring KL, Xie S, Borazjani A, Potter PM, Ross MK. Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids. Biochim Biophys Acta. 2010;1801:31–41.

    Article  CAS  PubMed  Google Scholar 

  48. Saboori AM, Newcombe DS. Human monocyte carboxylesterase. Purification and kinetics. J Biol Chem. 1990;265:19792–9.

    CAS  PubMed  Google Scholar 

  49. Crow JA, Middleton BL, Borazjani A, Hatfield MJ, Potter PM, Ross MK. Inhibition of carboxylesterase 1 is associated with cholesteryl ester retention in human THP-1 monocyte/macrophages. Biochim Biophys Acta. 2008;1781:643–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Crow JA, Bittles V, Herring KL, Borazjani A, Potter PM, Ross MK. Inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by chlorpyrifos oxon, paraoxon and methyl paraoxon. Toxicol Appl Pharmacol. 2012;258:145–50.

    Article  CAS  PubMed  Google Scholar 

  51. Wei Y, Peng AY, Huang J. Inhibition of porcine liver carboxylesterase by phosphorylated flavonoids. Chem Biol Interact. 2013;204:75–9.

    Article  CAS  PubMed  Google Scholar 

  52. Djeridane A, Brunel JM, Vidal N, Yousfi M, Ajandouz EH, Stocker P. Inhibition of porcine liver carboxylesterase by a new flavone glucoside isolated from Deverra scoparia. Chem Biol Interact. 2008;172:22–6.

    Article  CAS  PubMed  Google Scholar 

  53. Schegg KM, Welch WJ. The effect of nordihydroguaiaretic acid and related lignans on formyltetrahydrofolate synthetase and carboxylesterase. Biochim Biophys Acta. 1984;788:167–80.

    Article  CAS  PubMed  Google Scholar 

  54. Young BM, Hyatt JL, Bouck DC, Chen T, Hanumesh P, Price J, Boyd VA, Potter PM, Webb TR. Structure-activity relationships of substituted 1-pyridyl-2-phenyl-1,2-ethanediones: potent, selective carboxylesterase inhibitors. J Med Chem. 2010;53:8709–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parkinson EI, Jason HM, Tsurkan L, Hyatt JL, Edwards CC, Hicks LD, Yan B, Potter PM. Requirements for mammalian carboxylesterase inhibition by substituted ethane-1,2-diones. Bioorg Med Chem. 2011;19:4635–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wadkins RM, Hyatt JL, Wei X, Yoon KJ, Wierdl M, Edwards CC, Morton CL, Obenauer JC, Damodaran K, Beroza P, Danks MK, Potter PM. Identification and characterization of novel benzil (diphenylethane-1,2-dione) analogues as inhibitors of mammalian carboxylesterases. J Med Chem. 2005;48:2906–15.

    Article  CAS  PubMed  Google Scholar 

  57. Hyatt JL, Moak T, Hatfield MJ, Tsurkan L, Edwards CC, Wierdl M, Danks MK, Wadkins RM, Potter PM. Selective inhibition of carboxylesterases by isatins, indole-2,3-diones. J Med Chem. 2007;50:1876–85.

    Article  CAS  PubMed  Google Scholar 

  58. Hatfield MJ, Tsurkan LG, Hyatt JL, Edwards CC, Lemoff A, Jeffries C, Yan B, Potter PM. Modulation of esterified drug metabolism by tanshinones from Salvia miltiorrhiza (“Danshen”). J Nat Prod. 2013;76:36–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mao Z, Li Y, Peng Y, Luan X, Gui H, Feng X, Hu G, Shen J, Yan B, Yang J. Lipopolysaccharide down-regulates carbolesterases 1 and 2 and reduces hydrolysis activity in vitro and in vivo via p38MAPK-NF-kappaB pathway. Toxicol Lett. 2011;201:213–20.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang C, Xu Y, Gao P, Lu J, Li X, Liu D. Down-regulation of carboxylesterases 1 and 2 plays an important role in prodrug metabolism in immunological liver injury rats. Int Immunopharmacol. 2015;24:153–8.

    Article  CAS  PubMed  Google Scholar 

  61. Evans WE, McLeod HL. Pharmacogenomics–drug disposition, drug targets, and side effects. N Engl J Med. 2003;348:538–49.

    Article  CAS  PubMed  Google Scholar 

  62. Merali Z, Ross S, Pare G. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. Drug Metabol Drug Interact. 2014;29:143–51.

    Article  CAS  PubMed  Google Scholar 

  63. Marsh S, Xiao M, Yu J, Ahluwalia R, Minton M, Freimuth RR, Kwok PY, McLeod HL. Pharmacogenomic assessment of carboxylesterases 1 and 2. Genomics. 2004;84:661–8.

    Article  CAS  PubMed  Google Scholar 

  64. Eikelboom JW, Wallentin L, Connolly SJ, Ezekowitz M, Healey JS, Oldgren J, Yang S, Alings M, Kaatz S, Hohnloser SH, Diener HC, Franzosi MG, Huber K, Reilly P, Varrone J, Yusuf S. Risk of bleeding with 2 doses of dabigatran compared with warfarin in older and younger patients with atrial fibrillation: an analysis of the randomized evaluation of long-term anticoagulant therapy (RE-LY) trial. Circulation. 2011;123:2363–72.

    Article  CAS  PubMed  Google Scholar 

  65. Pare G, Eriksson N, Lehr T, Connolly S, Eikelboom J, Ezekowitz MD, Axelsson T, Haertter S, Oldgren J, Reilly P, Siegbahn A, Syvanen AC, Wadelius C, Wadelius M, Zimdahl-Gelling H, Yusuf S, Wallentin L. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation. 2013;127:1404–12.

    Article  CAS  PubMed  Google Scholar 

  66. Zhu HJ, Patrick KS, Yuan HJ, Wang JS, Donovan JL, DeVane CL, Malcolm R, Johnson JA, Youngblood GL, Sweet DH, Langaee TY, Markowitz JS. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet. 2008;82:1241–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu HJ, Appel DI, Jiang Y, Markowitz JS. Age- and sex-related expression and activity of carboxylesterase 1 and 2 in mouse and human liver. Drug Metab Dispos. 2009;37:1819–25.

    Article  CAS  PubMed  Google Scholar 

  68. Tarkiainen EK, Backman JT, Neuvonen M, Neuvonen PJ, Schwab M, Niemi M. Carboxylesterase 1 polymorphism impairs oseltamivir bioactivation in humans. Clin Pharmacol Ther. 2012;92:68–71.

    Article  CAS  PubMed  Google Scholar 

  69. Geshi E, Kimura T, Yoshimura M, Suzuki H, Koba S, Sakai T, Saito T, Koga A, Muramatsu M, Katagiri T. A single nucleotide polymorphism in the carboxylesterase gene is associated with the responsiveness to imidapril medication and the promoter activity. Hypertens Res. 2005;28:719–25.

    Article  CAS  PubMed  Google Scholar 

  70. Lewis JP, Horenstein RB, Ryan K, O’Connell JR, Gibson Q, Mitchell BD, Tanner K, Chai S, Bliden KP, Tantry US, Peer CJ, Figg WD, Spencer SD, Pacanowski MA, Gurbel PA, Shuldiner AR. The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet Genom. 2013;23:1–8.

    Article  CAS  Google Scholar 

  71. Kubo T, Kim SR, Sai K, Saito Y, Nakajima T, Matsumoto K, Saito H, Shirao K, Yamamoto N, Minami H, Ohtsu A, Yoshida T, Saijo N, Ohno Y, Ozawa S, Sawada J. Functional characterization of three naturally occurring single nucleotide polymorphisms in the CES2 gene encoding carboxylesterase 2 (HCE-2). Drug Metab Dispos. 2005;33:1482–7.

    Article  CAS  PubMed  Google Scholar 

  72. Staudinger JL, Xu C, Cui YJ, Klaassen CD. Nuclear receptor-mediated regulation of carboxylesterase expression and activity. Expert Opin Drug Metab Toxicol. 2010;6:261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Liu.

Ethics declarations

Funding

This work is supported by the National Natural Science Foundation of China (No: 81301953).

Conflict of interest

YX, CZ, WH and DL have no conflicts of interest that are directly relevant to the content of this review.

Additional information

Y. Xu and C. Zhang equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, C., He, W. et al. Regulations of Xenobiotics and Endobiotics on Carboxylesterases: A Comprehensive Review. Eur J Drug Metab Pharmacokinet 41, 321–330 (2016). https://doi.org/10.1007/s13318-016-0326-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0326-5

Keywords

Navigation