Skip to main content

Cytochrome P450: In Vitro Methods and Protocols

  • Protocol
  • First Online:
Cytochrome P450

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1181 Accesses

Abstract

Chapter provides background information useful in fully understanding how and why cytochrome P450 (CYP) in vitro methods and protocols are important in a modern drug discovery pipeline. We describe the organizational structure and the research activities within a typical pharmaceutical drug discovery and development company. The types of drug metabolism and pharmacokinetics (DMPK) and its drug disposition (ADME) properties, including in silico computational methods, in vitro ADME tests, and in vivo whole-animal models, are discussed and how these assays are being developed and applied to rational drug design. We discuss the interrelationship between drug physiology and pharmacology and how this interplay is used to develop DMPK assays. We suggest assay strategies for utilizing CYP in vitro methods and protocols, and finally, we discuss the future outlook for DMPK approaches in drug discovery. Chapter 2 provides comprehensive information concerning CYP enzymes and their related metabolism properties on xenobiotics, while Chapters 322 provide detailed CYP and non-CYP in vitro methods and protocols that can be easily established in a drug discovery pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caldwell GW, Yan Z, Masucci JA, Hageman W, Leo G, Ritchie DM (2003) Applied pharmacokinetics in drug development: an overview of drug discovery. Pharmaceut Develop Regul 1(2):117–132

    Article  Google Scholar 

  2. Berry IR, Martin RP (2008) The pharmaceutical regulatory process, 2nd edn. Informa Healthcare, New York

    Book  Google Scholar 

  3. Ng R (2015) Drugs: from discovery to approval, 3rd edn. John Wiley & Sons Inc., New York

    Google Scholar 

  4. US Department of Health and Human Services. US Food and Drug Administration (FDA). http://www.fda.gov/ Drugs/Development Approval Process/How Drugs are Developed and Approved/Drug and Biologic Approval Reports/AND A Generic Drug Approvals/default.htm. Accessed 19 June 2020

  5. Munos B (2009) Lessons for 60 years of pharmaceutical innovation. Nat Rev Drug Discov 8(12):959–968

    Article  CAS  PubMed  Google Scholar 

  6. Eder J, Sedrani R, Wiesmann C (2014) The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov 13(8):577–587

    Article  CAS  PubMed  Google Scholar 

  7. Paul SM, Mytelka DS, Dunwiddie CT et al (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214

    Article  CAS  PubMed  Google Scholar 

  8. Caldwell J (1996) The role of drug metabolism in drug discovery and development: opportunities to enhance time- and cost-efficiency. Pharm Sci 2:117–119

    CAS  Google Scholar 

  9. Chen KJ, Lee JC (2008) Establishment of high throughput screening (HTS) for drug discovery. Huaxue 66(4):269–277

    CAS  Google Scholar 

  10. Caldwell GW (2015) In silico tools used for compound selection during target-based drug discovery/development. Expert Opin Drug Discovery 10(7):1–23

    CAS  Google Scholar 

  11. Caldwell GW (2000) Compound optimization in early- and late-phase drug discovery: acceptable pharmacokinetics properties utilizing combined physicochemical, in vitro, and in vivo screens. Curr Opin Drug Discov 3:30–41

    CAS  Google Scholar 

  12. Caldwell GW, Ritchie DM, Masucci JA, Hageman W, Yan Z (2001) The new pre-preclinical paradigm: compound optimization in early and late phase drug discovery. Curr Top Med Chem 1(5):353–366

    Article  CAS  PubMed  Google Scholar 

  13. Caldwell GW, Yan Z (2009) ADME optimization and toxicity assessment in early- and late-phase drug discovery. Curr Top Med Chem 9(11):965–980

    Article  CAS  PubMed  Google Scholar 

  14. Caldwell GW (2016) ADME optimization and toxicity assessment in drug discovery. Front Med Chem 8(1):3–60

    Article  Google Scholar 

  15. Yan Z, Caldwell GW (eds) (2004) Optimization in drug discovery: in vitro methods, 1st edn. Humana Press, Totowa, NJ

    Google Scholar 

  16. Caldwell GW, Yan Z (eds) (2014) Optimization in drug discovery: in vitro methods, 2nd edn. Humana Press, Totowa, NJ

    Google Scholar 

  17. Hall JE, Hall ME (2021) Guyton and hall textbook of medical physiology, 14th edn. Elsevier, Philadelphia, Pennsylvanian

    Google Scholar 

  18. Kenakin T (2016) Pharmacology in drug discovery and development, 2nd edn. Elsevier, Philadelphia, Pennsylvania

    Google Scholar 

  19. Di L, Fish PV, Mano T (2012) Bridging solubility between drug discovery and development. Drug Discov Today 17(9–10):486–495

    Article  CAS  PubMed  Google Scholar 

  20. Castro P, Madureira R, Sarmento B, Pintado M (2015) Tissue-based in vitro and ex vivo models for buccal permeability studies. In: Sarmento B (ed) Concepts and models for drug permeability studies-cell and tissue based in vitro culture models. Elsevier, Philadelphia, Pennsylvania, pp 189–202

    Google Scholar 

  21. Carstensen JT, Rhodes CT (eds) (2007) Drug stability, revised, and expanded. CRC Press, Boca Raton. https://doi.org/10.1201/9780367801298

    Book  Google Scholar 

  22. Caldwell GW, Hasting B, Masucci JA, Yan Z (2014) Small molecule formulation screening strategies in drug discovery. In: Caldwell GW, Yan Z (eds) Optimization in drug discovery: in vitro methods, 2nd edn. Humana Press, Totowa, NJ, pp 1–20

    Chapter  Google Scholar 

  23. Caldwell GW, Ferguson C, Buerger R, Kulp L, Yan Z (2014) Permeability assessment using 5-day cultured caco-2 cell monolayers. In: Caldwell GW, Yan Z (eds) Optimization in drug discovery: in vitro methods, 2nd edn. Humana Press, Totowa, NJ, pp 49–76

    Chapter  Google Scholar 

  24. Yan Z, Caldwell GW (2001) Metabolism profiling and cytochrome P450 inhibition & induction in drug discovery. Curr Top Med Chem 1(5):403–425

    Article  CAS  PubMed  Google Scholar 

  25. Cohen MS, Forrest ML (2011) Lymphatic drug delivery: therapy, imaging, and nanotechnology. Adv Drug Deliv Rev 63(10–11):865–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coe KJ, Koudriakova T (2014) Metabolic stability assessed by liver microsomes and hepatocytes. In: Caldwell GW, Yan Z (eds) Optimization in drug discovery: in vitro methods, 2nd edn. Humana Press, Totowa, NJ, pp 87–99

    Chapter  Google Scholar 

  27. Lombardo F, Obach RS, Shalaeva MY et al (2002) Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J Med Chem 45:2867–2876

    Article  CAS  PubMed  Google Scholar 

  28. Caldwell GW, Masucci JA, Yan Z, Hageman W (2004) Allometric scaling of pharmacokinetic parameters in drug discovery: can human CL, Vss and t1/2 be predicted from in-vivo rat data. Eur J Drug Metabol Pharmacol 29(2):133–143

    Article  CAS  Google Scholar 

  29. Pang SK, Durk MR (2010) Physiologically-based pharmacokinetic modeling for absorption, transport, metabolism, and excretion. J Pharmacokinet Pharmacodyn 37(6):591–615

    Article  CAS  PubMed  Google Scholar 

  30. Ashauer R, Agatz A, Albert C et al (2011) Toxicokinetic-toxicodynamic modeling of quantal and graded sublethal endpoints: a brief discussion of concepts. Environ Toxicol Chem 30(11):2519–2524

    Article  CAS  PubMed  Google Scholar 

  31. Yan Z, Caldwell GW (2003) Metabolic assessment in liver microsomes by co-activating cytochrome P450s and UDP-glycosyltransferases. Eur J Drug Metabol Pharmacol 28(3):223–232

    Article  CAS  Google Scholar 

  32. Caldwell GW, Masucci JA, Chacon E (1999) High throughput liquid chromatography-mass spectrometry assessment of the metabolic activity of commercially available hepatocytes from 96-well plates. Comb Chem High Throughput Screen 2(1):39–51

    Article  CAS  PubMed  Google Scholar 

  33. Cerny MA (2016) Prevalence of non-cytochrome P450–mediated metabolism in food and drug administration–approved oral and intravenous drugs: 2006–2015. Drug Metab Dispos 44:1246–1252

    Article  CAS  PubMed  Google Scholar 

  34. Yan Z, Rafferty B, Caldwell GW, Masucci JA (2002) Rapidly distinguishing reversible and irreversible Cyp450 inhibitors by using fluorometric kinetic measurements. Eur J Drug Metabol Pharmacol 27(4):281–287

    Article  CAS  Google Scholar 

  35. Caldwell GW, Yan Z, Lang W, Masucci JA (2012) The IC50 concept revisited. Curr Top Med Chem 12:1282–1290

    Article  CAS  PubMed  Google Scholar 

  36. Yan Z, Caldwell GW (2013) In vitro identification of cytochrome P450 enzymes responsible for drug metabolism. Methods Mol Biol 1015:251–261

    Article  CAS  PubMed  Google Scholar 

  37. Argikar UA, Potter PM, Hutzler JM, Marathe PH (2016) Challenges and opportunities with non-CYP enzymes aldehyde oxidase, carboxylesterase, and UDP-glucuronosyltransferase: focus on reaction phenotyping and prediction of human clearance. AAPS J 18(6):1391–1405

    Article  CAS  PubMed  Google Scholar 

  38. Dasgupta M, Tang W, Caldwell GW, Yan Z (2010) Use of stable isotopic-labeled probes to facilitate LC/MS-based high throughput screening of time-dependent CYP inhibitors. Rapid Commun Mass Spectrom 24:2177–2185

    Article  CAS  PubMed  Google Scholar 

  39. Yan Z, Caldwell GW (2012) The current status of time dependent CYP inhibition assay and in silico drug-drug interaction predictions. Curr Top Med Chem 12(11):1291–1297

    Article  CAS  PubMed  Google Scholar 

  40. Yan Z, Caldwell GW (2004) Stable-isotope trapping and rapid identification of reactive metabolites using the isotope MS signature. Anal Chem 76(23):6835–6847

    Article  CAS  PubMed  Google Scholar 

  41. Caldwell GW, Yan Z (2006) Screening for reactive intermediates and toxicity assessment in drug discovery. Curr Top Med Chem 9(1):47–60

    CAS  Google Scholar 

  42. Yan Z, Caldwell GW, Maher N (2008) Unbiased high-throughput screening of reactive metabolites on the linear ion trap mass spectrometer using polarity switch and mass tag triggered data-dependent acquisition. Anal Chem 80(16):6410–6422

    Article  CAS  PubMed  Google Scholar 

  43. Caldwell GW (2017) Can untargeted metabolomics be utilized in discovery/development? Curr Top Med Chem 17(24):2716–2739

    Article  CAS  PubMed  Google Scholar 

  44. Fernandes S, Cassani M, Pagliari S, Filipensky P, Cavalieri F, Forte G (2020) Tumor in 3D: in vitro complex cellular models to improve nanodrugs cancer therapy. Curr Med Chem 27(42):7234–7255. https://doi.org/10.2174/0929867327666200625151134

    Article  CAS  PubMed  Google Scholar 

  45. Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A, Tovaglieri A, Chalkiadaki A, Kim HJ, Ingber DE (2018) Microfluidic organ-on-a-chip models of human intestine. Cell Mol Gastroenterol Hepatol 5(4):659–668

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shi S (2014) Biologics: an update and challenge of their pharmacokinetics. Curr Drug Metab 15(3):271–290

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yan, Z., Caldwell, G.W. (2021). Cytochrome P450: In Vitro Methods and Protocols. In: Yan, Z., Caldwell, G.W. (eds) Cytochrome P450. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1542-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1542-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1541-6

  • Online ISBN: 978-1-0716-1542-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics