Skip to main content
Log in

Altered Expression of Transporters, its Potential Mechanisms and Influences in the Liver of Rodent Models Associated with Diabetes Mellitus and Obesity

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Diabetes mellitus is becoming an increasingly prevalent disease that concerns patients and healthcare professionals worldwide. Among many anti-diabetic agents in clinical uses, numerous reports are available on their altered pharmacokinetics because of changes in the expression of drug transporters and metabolic enzymes under diabetic states. These changes may affect the safety and efficacy of therapeutic agents and/or drug–drug interaction with co-administered agents. Therefore, the changes in transporter expression should be identified, and the underlying mechanisms should be clarified. This review summarizes the progress of recent studies on the alterations in important uptake and efflux transporters in liver of diabetic animals and their regulatory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. More VR, Wen X, Thomas PE, Aleksunes LM, Slitt AL. Severe diabetes and leptin resistance cause differential hepatic and renal transporter expression in mice. Comp Hepatol. 2012;11(1):1. doi:10.1186/1476-5926-11-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheng Q, Aleksunes LM, Manautou JE, Cherrington NJ, Scheffer GL, Yamasaki H, et al. Drug-metabolizing enzyme and transporter expression in a mouse model of diabetes and obesity. Mol Pharm. 2008;5(1):77–91. doi:10.1021/mp700114j.

    Article  CAS  PubMed  Google Scholar 

  3. Nowicki MT, Aleksunes LM, Sawant SP, Dnyanmote AV, Mehendale HM, Manautou JE. Renal and hepatic transporter expression in type 2 diabetic rats. Drug Metab Lett. 2008;2(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  4. Li L, Sham YY, Bikadi Z, Elmquist WF. pH-Dependent transport of pemetrexed by breast cancer resistance protein. Drug Metab Dispos. 2011;39(9):1478–85. doi:10.1124/dmd.111.039370.

    Article  CAS  PubMed  Google Scholar 

  5. Vague P, Coste TC, Jannot MF, Raccah D, Tsimaratos M. C-peptide, Na + , K(+)-ATPase, and diabetes. Experim Diabesity Res. 2004;5(1):37–50. doi:10.1080/15438600490424514.

    Article  CAS  Google Scholar 

  6. He L, Yang Y, Guo C, Yao D, Liu HH, Sheng JJ, et al. Opposite regulation of hepatic breast cancer resistance protein in type 1 and 2 diabetes mellitus. Eur J Pharmacol. 2014;724:185–92. doi:10.1016/j.ejphar.2013.12.008.

    Article  CAS  PubMed  Google Scholar 

  7. Pan G, Elmquist WF. Mitoxantrone permeability in MDCKII cells is influenced by active influx transport. Mol Pharm. 2007;4:475–83.

    Article  CAS  PubMed  Google Scholar 

  8. Pan G, Winter TN, Roberts JC, Fairbanks CA, Elmquist WF. Organic cation uptake is enhanced in bcrp1-transfected MDCKII cells. Mol Pharm. 2010;7(1):138–45. doi:10.1021/mp900177r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anger GJ, Magomedova L, Piquette-Miller M. Impact of acute streptozotocin-induced diabetes on ABC transporter expression in rats. Chem Biodivers. 2009;6(11):1943–59. doi:10.1002/cbdv.200900053.

    Article  CAS  PubMed  Google Scholar 

  10. Liu L, Liu XD. Alterations in function and expression of ABC transporters at blood-brain barrier under diabetes and the clinical significances. Front Pharmacol. 2014;5:273. doi:10.3389/fphar.2014.00273.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kobori T, Harada S, Nakamoto K, Tokuyama S. Functional alterations of intestinal P-glycoprotein under diabetic conditions. Biol Pharm Bull. 2013;36(9):1381–90.

    Article  CAS  PubMed  Google Scholar 

  12. Anger GJ, Cressman AM, Piquette-Miller M. Expression of ABC Efflux transporters in placenta from women with insulin-managed diabetes. PLoS ONE. 2012;7(4):e35027. doi:10.1371/journal.pone.0035027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gandhi A, Ghose R. Altered drug metabolism and transport in pathophysiological conditions. Topics on Drug Metabolism 2012:111–36.

  14. Carvalho TM, Cavalli Rde C, Cunha SP, de Baraldi CO, Marques MP, Antunes NJ, et al. Influence of gestational diabetes mellitus on the stereoselective kinetic disposition and metabolism of labetalol in hypertensive patients. Eur J Clin Pharmacol. 2011;67(1):55–61. doi:10.1007/s00228-010-0896-0.

    Article  CAS  PubMed  Google Scholar 

  15. Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER. Association of organic cation transporter 1 with intolerance to metformin in Type 2 diabetes: a GoDARTS study. Diabetes. 2015;64(5):1786–93. doi:10.2337/db14-1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faber KN, Muller M, Jansen PL. Drug transport proteins in the liver. Adv Drug Deliv Rev. 2003;55(1):107–24.

    Article  CAS  PubMed  Google Scholar 

  17. Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158(3):693–705. doi:10.1111/j.1476-5381.2009.00430.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niemi M. Role of OATP transporters in the disposition of drugs. Pharmacogenomics. 2007;8(7):787–802. doi:10.2217/14622416.8.7.787.

    Article  CAS  PubMed  Google Scholar 

  19. Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther. 2005;78(3):260–77. doi:10.1016/j.clpt.2005.05.011.

    Article  CAS  PubMed  Google Scholar 

  20. Hasegawa Y, Kishimoto S, Shibatani N, Inotsume N, Takeuchi Y, Fukushima S. The disposition of pravastatin in a rat model of streptozotocin-induced diabetes and organic anion transporting polypeptide 2 and multidrug resistance-associated protein 2 expression in the liver. Biol Pharm Bull. 2010;33(1):153–6.

    Article  CAS  PubMed  Google Scholar 

  21. More VR, Slitt AL. Alteration of hepatic but not renal transporter expression in diet-induced obese mice. Drug Metab Dispos. 2011;39(6):992–9. doi:10.1124/dmd.110.037507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, et al. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 1997;16(7):871–81.

    Article  CAS  PubMed  Google Scholar 

  23. Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol. 2002;13(4):866–74.

    CAS  PubMed  Google Scholar 

  24. Geier A, Dietrich CG, Grote T, Beuers U, Prufer T, Fraunberger P, et al. Characterization of organic anion transporter regulation, glutathione metabolism and bile formation in the obese Zucker rat. J Hepatol. 2005;43(6):1021–30. doi:10.1016/j.jhep.2005.05.031.

    Article  CAS  PubMed  Google Scholar 

  25. Pizarro M, Balasubramaniyan N, Solis N, Solar A, Duarte I, Miquel JF, et al. Bile secretory function in the obese Zucker rat: evidence of cholestasis and altered canalicular transport function. Gut. 2004;53(12):1837–43. doi:10.1136/gut.2003.037689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim MS, Wang S, Shen Z, Kochansky CJ, Strauss JR, Franklin RB, et al. Differences in the pharmacokinetics of peroxisome proliferator activated receptor agonists in genetically obese zucker and spraguedawley rats: implications of decreased glucuronidation in obese zucker rats. Drug Metab Dispos. 2004;32:909–14.

    Article  CAS  PubMed  Google Scholar 

  27. Nagel G, Volk C, Friedrich T, Ulzheimer JC, Bamberg E, Koepsell H. A reevaluation of substrate specificity of the rat cation transporter rOCT1. J Biol Chem. 1997;272(51):31953–6.

    Article  CAS  PubMed  Google Scholar 

  28. Martel F, Vetter T, Russ H, Grundemann D, Azevedo I, Koepsell H, et al. Transport of small organic cations in the rat liver. The role of the organic cation transporter OCT1. Naunyn-Schmiedeberg’s Arch Pharmacol. 1996;354(3):320–6.

    CAS  Google Scholar 

  29. Grover B, Buckley D, Buckley AR, Cacini W. Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J Pharmacol Exp Ther. 2004;308(3):949–56. doi:10.1124/jpet.103.058388.

    Article  CAS  PubMed  Google Scholar 

  30. Stieger B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol. 2011;201:205–59. doi:10.1007/978-3-642-14541-4_5.

    Article  CAS  PubMed  Google Scholar 

  31. Hagenbuch B, Meier PJ. Sinusoidal (basolateral) bile salt uptake systems of hepatocytes. Semin Liver Dis. 1996;16(2):129–36. doi:10.1055/s-2007-1007226.

    Article  CAS  PubMed  Google Scholar 

  32. Guo C, He L, Yao D, Jiye A, Cao B, Ren J, et al. Alpha-naphthylisothiocyanate modulates hepatobiliary transporters in sandwich-cultured rat hepatocytes. Toxicol Lett. 2014;224(1):93–100. doi:10.1016/j.toxlet.2013.09.019.

    Article  CAS  PubMed  Google Scholar 

  33. Koopen NR, Wolters H, Muller M, Schippers IJ, Havinga R, Roelofsen H, et al. Hepatic bile salt flux does not modulate level and activity of the sinusoidal Na + -taurocholate cotransporter (ntcp) in rats. J Hepatol. 1997;27(4):699–706.

    Article  CAS  PubMed  Google Scholar 

  34. Konig J, Nies AT, Cui Y, Leier I, Keppler D. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta. 1999;1461(2):377–94.

    Article  CAS  PubMed  Google Scholar 

  35. van Waarde WM, Verkade HJ, Wolters H, Havinga R, Baller J, Bloks V, et al. Differential effects of streptozotocin-induced diabetes on expression of hepatic ABC-transporters in rats. Gastroenterology. 2002;122(7):1842–52.

    Article  PubMed  Google Scholar 

  36. Hasegawa Y, Kishimoto S, Shibatani N, Nomura H, Ishii Y, Onishi M, et al. The pharmacokinetics of morphine and its glucuronide conjugate in a rat model of streptozotocin-induced diabetes and the expression of MRP2, MRP3 and UGT2B1 in the liver. J Pharm Pharmacol. 2010;62(3):310–4. doi:10.1211/jpp.62.03.0004.

    Article  CAS  PubMed  Google Scholar 

  37. Lu SC, Kuhlenkamp J, Wu H, Sun WM, Stone L, Kaplowitz N. Progressive defect in biliary GSH secretion in streptozotocin-induced diabetic rats. Am J Physiol. 1997;272(2 Pt 1):G374–82.

    CAS  PubMed  Google Scholar 

  38. Reisman SA, Csanaky IL, Aleksunes LM, Klaassen CD. Altered disposition of acetaminophen in Nrf2-null and Keap1-knockdown mice. Toxicol Sci. 2009;109(1):31–40. doi:10.1093/toxsci/kfp047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zamek-Gliszczynski MJ, Goldstein KM, Paulman A, Baker TK, Ryan TP. Minor compensatory changes in SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats do not detract from their utility in the study of transporter-mediated pharmacokinetics. Drug Metab Dispos. 2013;41(6):1174–8. doi:10.1124/dmd.113.051409.

    Article  CAS  PubMed  Google Scholar 

  40. Kubo K, Sekine S, Saito M. Compensatory Expression of MRP3 in the Livers of MRP2-Deficient EHBRs Is Promoted by DHA Intake. Biosci Biotechnol Biochem. 2014;73(11):2432–8. doi:10.1271/bbb.90387.

    Article  Google Scholar 

  41. Lam JL, Jiang Y, Zhang T, Zhang EY, Smith BJ. Expression and functional analysis of hepatic cytochromes P450, nuclear receptors, and membrane transporters in 10- and 25-week-old db/db Mice. Drug Metab Dispos. 2010;38(12):2252–8. doi:10.1124/dmd.110.034223.

    Article  CAS  PubMed  Google Scholar 

  42. Anger GJ, Piquette-Miller M. Mechanisms of reduced maternal and fetal lopinavir exposure in a rat model of gestational diabetes. Drug Metab Dispos. 2011;39(10):1850–9. doi:10.1124/dmd.111.040626.

    Article  CAS  PubMed  Google Scholar 

  43. Chen YN, Mickley LA, Schwartz AM, Acton EM, Hwang JL, Fojo AT. Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J Biol Chem. 1990;265(17):10073–80.

    CAS  PubMed  Google Scholar 

  44. Nakagawa M, Schneider E, Dixon KH, Horton J, Kelley K, Morrow C, et al. Reduced intracellular drug accumulation in the absence of P-glycoprotein (mdr1) overexpression in mitoxantrone-resistant human MCF-7 breast cancer cells. Cancer Res. 1992;52(22):6175–81.

    CAS  PubMed  Google Scholar 

  45. Lee JS, Scala S, Matsumoto Y, Dickstein B, Robey R, Zhan Z, et al. Reduced drug accumulation and multidrug resistance in human breast cancer cells without associated P-glycoprotein or MRP overexpression. J Cell Biochem. 1997;65(4):513–26.

    Article  CAS  PubMed  Google Scholar 

  46. Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001;61(8):3458–64.

    CAS  PubMed  Google Scholar 

  47. Bloks VW, Bakker-Van Waarde WM, Verkade HJ, Kema IP, Wolters H, Vink E, et al. Down-regulation of hepatic and intestinal Abcg5 and Abcg8 expression associated with altered sterol fluxes in rats with streptozotocin-induced diabetes. Diabetologia. 2004;47(1):104–12. doi:10.1007/s00125-003-1261-y.

    Article  CAS  PubMed  Google Scholar 

  48. Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ. Hepatic transport of bile salts. Semin Liver Dis. 2000;20(3):273–92. doi:10.1055/s-2000-9426.

    Article  CAS  PubMed  Google Scholar 

  49. Jin HE, Hong SS, Choi MK, Maeng HJ, Kim DD, Chung SJ, et al. Reduced antidiabetic effect of metformin and down-regulation of hepatic Oct1 in rats with ethynylestradiol-induced cholestasis. Pharm Res. 2009;26(3):549–59. doi:10.1007/s11095-008-9770-5.

    Article  CAS  PubMed  Google Scholar 

  50. Clarke JD, Dzierlenga AL, Nelson NR, Li H, Werts S, Goedken MJ, et al. Mechanism of altered metformin distribution in nonalcoholic steatohepatitis. Diabetes. 2015;64(9):3305–13. doi:10.2337/db14-1947.

    Article  CAS  PubMed  Google Scholar 

  51. Alkharfy KM. Influence of overt diabetes mellitus on cyclosporine pharmacokinetics in a canine model. Experim Diabetes Res. 2009;2009:363787. doi:10.1155/2009/363787.

    Google Scholar 

  52. Xu D, Li F, Zhang M, Zhang J, Liu C, Hu MY, et al. Decreased exposure of simvastatin and simvastatin acid in a rat model of type 2 diabetes. Acta Pharmacol Sin. 2014;35(9):1215–25. doi:10.1038/aps.2014.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li J, Wang X, Liu H, Guo H, Zhang M, Mei D, et al. Impaired hepatic and intestinal ATP-binding cassette transporter G5/8 was associated with high exposure of beta-sitosterol and the potential risks to blood-brain barrier integrity in diabetic rats. J Pharm Pharmacol. 2014;66(3):428–36. doi:10.1111/jphp.12178.

    Article  CAS  PubMed  Google Scholar 

  54. Mertens PR, Martin IV, Frye BC, Rauen T, Strauch S, Pabst M, et al. Rat Mrp2 gene expression is regulated by an interleukin-1beta-stimulated biphasic response with enhanced transcription and subcellular shuttling of YB-1. Eur J Cell Biol. 2012;91(6–7):533–41. doi:10.1016/j.ejcb.2011.12.002.

    Article  CAS  PubMed  Google Scholar 

  55. Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem. 2002;277(4):2908–15. doi:10.1074/jbc.M109326200.

    Article  CAS  PubMed  Google Scholar 

  56. Teng S, Jekerle V, Piquette-Miller M. Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab Dispos. 2003;31(11):1296–9. doi:10.1124/dmd.31.11.1296.

    Article  CAS  PubMed  Google Scholar 

  57. Jigorel E, Le Vee M, Boursier-Neyret C, Parmentier Y, Fardel O. Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab Dispos. 2006;34(10):1756–63. doi:10.1124/dmd.106.010033.

    Article  CAS  PubMed  Google Scholar 

  58. Assem M, Schuetz EG, Leggas M, Sun DX, Yasuda K, Reid G, et al. Interactions between hepatic Mrp4 and Sult2a as revealed by the constitutive androstane receptor and Mrp4 knockout mice. J Biol Chem. 2004;279(21):22250–7. doi:10.1074/jbc.M314111200.

    Article  CAS  PubMed  Google Scholar 

  59. Klaassen CD, Slitt AL. Regulation of hepatic transporters by xenobiotic receptors. Curr Drug Metab. 2005;6(4):309–28.

    Article  CAS  PubMed  Google Scholar 

  60. Moffit JS, Aleksunes LM, Maher JM, Scheffer GL, Klaassen CD, Manautou JE. Induction of hepatic transporters multidrug resistance-associated proteins (Mrp) 3 and 4 by clofibrate is regulated by peroxisome proliferator-activated receptor alpha. J Pharmacol Exp Ther. 2006;317(2):537–45. doi:10.1124/jpet.105.093765.

    Article  CAS  PubMed  Google Scholar 

  61. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102(6):731–44.

    Article  CAS  PubMed  Google Scholar 

  62. Shih DQ, Bussen M, Sehayek E, Ananthanarayanan M, Shneider BL, Suchy FJ, et al. Hepatocyte nuclear factor-1alpha is an essential regulator of bile acid and plasma cholesterol metabolism. Nat Genet. 2001;27(4):375–82. doi:10.1038/86871.

    Article  CAS  PubMed  Google Scholar 

  63. Jung D, Hagenbuch B, Gresh L, Pontoglio M, Meier PJ, Kullak-Ublick GA. Characterization of the human OATP-C (SLC21A6) gene promoter and regulation of liver-specific OATP genes by hepatocyte nuclear factor 1 alpha. J Biol Chem. 2001;276(40):37206–14. doi:10.1074/jbc.M103988200.

    Article  CAS  PubMed  Google Scholar 

  64. Karpen SJ, Sun AQ, Kudish B, Hagenbuch B, Meier PJ, Ananthanarayanan M, et al. Multiple factors regulate the rat liver basolateral sodium-dependent bile acid cotransporter gene promoter. J Biol Chem. 1996;271(25):15211–21.

    Article  CAS  PubMed  Google Scholar 

  65. Yacovino LL, Aleksunes LM. Renal efflux transporter expression in pregnant mice with Type I diabetes. Toxicol Lett. 2012;211(3):304–11. doi:10.1016/j.toxlet.2012.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lam JL, Jiang Y, Zhang T, Zhang EY, Smith BJ. Expression and functional analysis of hepatic cytochromes P450, nuclear receptors, and membrane transporters in 10- and 25-week-old db/db mice. Drug Metab Dispos. 2010;38(12):2252–8. doi:10.1124/dmd.110.034223.

    Article  CAS  PubMed  Google Scholar 

  67. Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem. 2001;276(31):28857–65. doi:10.1074/jbc.M011610200.

    Article  CAS  PubMed  Google Scholar 

  68. Ogasawara K, Terada T, Asaka J, Katsura T, Inui K. Hepatocyte nuclear factor-4{alpha} regulates the human organic anion transporter 1 gene in the kidney. Am J Physiol Renal Physiol. 2007;292(6):F1819–26. doi:10.1152/ajprenal.00017.2007.

    Article  CAS  PubMed  Google Scholar 

  69. Saji T, Kikuchi R, Kusuhara H, Kim I, Gonzalez FJ, Sugiyama Y. Transcriptional regulation of human and mouse organic anion transporter 1 by hepatocyte nuclear factor 1 alpha/beta. J Pharmacol Exp Ther. 2008;324(2):784–90. doi:10.1124/jpet.107.128249.

    Article  CAS  PubMed  Google Scholar 

  70. Maher JM, Aleksunes LM, Dieter MZ, Tanaka Y, Peters JM, Manautou JE, et al. Nrf2- and PPAR alpha-mediated regulation of hepatic Mrp transporters after exposure to perfluorooctanoic acid and perfluorodecanoic acid. Toxicol Sci. 2008;106(2):319–28. doi:10.1093/toxsci/kfn177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Morohoshi M, Fujisawa K, Uchimura I, Numano F. Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro. Diabetes. 1996;45(7):954–9.

    Article  PubMed  Google Scholar 

  72. Alexandraki KI, Piperi C, Ziakas PD, Apostolopoulos NV, Makrilakis K, Syriou V, et al. Cytokine secretion in long-standing diabetes mellitus type 1 and 2: associations with low-grade systemic inflammation. J Clin Immunol. 2008;28(4):314–21. doi:10.1007/s10875-007-9164-1.

    Article  CAS  PubMed  Google Scholar 

  73. Moller DE. Potential role of TNF-α the pathogenesis of insulin resistance and type 2. Diabetes. 2000;11:212–7.

    CAS  Google Scholar 

  74. Jhun H, Choi J, Hong J, Lee S, Kwak A, Kim E, et al. IL-32gamma overexpression accelerates streptozotocin (STZ)-induced type 1 diabetes. Cytokine. 2014;69(1):1–5. doi:10.1016/j.cyto.2014.05.002.

    Article  CAS  PubMed  Google Scholar 

  75. Le Vee M, Lecureur V, Stieger B, Fardel O. Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-6. Drug Metab Dispos. 2009;37(3):685–93. doi:10.1124/dmd.108.023630.

    Article  PubMed  Google Scholar 

  76. Petrovic V, Piquette-Miller M. Impact of polyinosinic/polycytidylic acid on placental and hepatobiliary drug transporters in pregnant rats. Drug Metab Dispos. 2010;38(10):1760–6. doi:10.1124/dmd.110.034470.

    Article  CAS  PubMed  Google Scholar 

  77. Vos TA, Hooiveld GJ, Koning H, Childs S, Meijer DK, Moshage H, et al. Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver. Hepatology. 1998;28(6):1637–44. doi:10.1002/hep.510280625.

    Article  CAS  PubMed  Google Scholar 

  78. Tang W, Yi C, Kalitsky J, Piquette-Miller M. Endotoxin downregulates hepatic expression of P-glycoprotein and MRP2 in 2-acetylaminofluorene-treated rats. Mol Cell Biol Res Comm MCBRC. 2000;4(2):90–7. doi:10.1006/mcbr.2000.0264.

    Article  CAS  Google Scholar 

  79. Cherrington NJ, Slitt AL, Li N, Klaassen CD. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab Dispos. 2004;32(7):734–41.

    Article  CAS  PubMed  Google Scholar 

  80. Kameyama N, Arisawa S, Ueyama J, Kagota S, Shinozuka K, Hattori A, et al. Increase in P-glycoprotein accompanied by activation of protein kinase Calpha and NF-kappaB p65 in the livers of rats with streptozotocin-induced diabetes. Biochim Biophys Acta. 2008;1782(5):355–60. doi:10.1016/j.bbadis.2008.02.005.

    Article  CAS  PubMed  Google Scholar 

  81. Ghose R, Zimmerman TL, Thevananther S, Karpen SJ. Endotoxin leads to rapid subcellular re-localization of hepatic RXRalpha: a novel mechanism for reduced hepatic gene expression in inflammation. Nucl Recept. 2004;2(1):4. doi:10.1186/1478-1336-2-4.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Teng S, Piquette-Miller M. The involvement of the pregnane X receptor in hepatic gene regulation during inflammation in mice. J Pharmacol Exp Ther. 2005;312(2):841–8. doi:10.1124/jpet.104.076141.

    Article  CAS  PubMed  Google Scholar 

  83. Zimmerman TL, Thevananther S, Ghose R, Burns AR, Karpen SJ. Nuclear export of retinoid X receptor alpha in response to interleukin-1beta-mediated cell signaling: roles for JNK and SER260. J Biol Chem. 2006;281(22):15434–40. doi:10.1074/jbc.M508277200.

    Article  CAS  PubMed  Google Scholar 

  84. Cressman AM, Petrovic V, Piquette-Miller M. Inflammation-mediated changes in drug transporter expression/activity: implications for therapeutic drug response. Exp Rev Clin Pharmacol. 2012;5(1):69–89. doi:10.1586/ecp.11.66.

    Article  CAS  Google Scholar 

  85. Cheng J, Shah YM, Gonzalez FJ. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol Sci. 2012;33(6):323–30. doi:10.1016/j.tips.2012.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant No. 81302836 and 81573499), Key Projects of National Science and Technology Program, China (Grant Nos. 2012ZX09301001-006, 2012ZX09302003 and 2012ZX09301001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyu Pan.

Ethics declarations

Conflict of interest

None of the authors has any potential conflicts of interest related to this manuscript.

Additional information

L. Ma, L. He and L. Wang are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., He, L., Wang, L. et al. Altered Expression of Transporters, its Potential Mechanisms and Influences in the Liver of Rodent Models Associated with Diabetes Mellitus and Obesity. Eur J Drug Metab Pharmacokinet 41, 199–210 (2016). https://doi.org/10.1007/s13318-015-0306-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-015-0306-1

Keywords

Navigation